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Abstract—In large-scale data classification tasks, it is becoming
more and more challenging in finding a true class from a
huge amount of candidate categories. Fortunately, a hierarchical
structure usually exists in these massive categories. The task
of utilizing this structure for effective classification is called
hierarchical classification. It usually follows a top-down fashion
which predicts a sample from the root node with a coarse-grained
category to a leaf node with a fine-grained category. However,
misclassification is inevitable if the information is insufficient or
large uncertainty exists in the prediction process. In this scenario,
we can design a stopping strategy to stop the sample at an internal
node with a coarser category, instead of predicting a wrong
leaf node. Several studies address the problem by improving
performance in terms of hierarchical accuracy and informative
prediction. However, all of these researches ignore an important
issue: when predicting a sample at the current node, the error is
inclined to occur if large uncertainty exists in the next lower level
children nodes. In this paper, we integrate this uncertainty into a
risk problem: when predicting a sample at a decision node, it will
take precipitance risk in predicting the sample to a children node
in the next lower level on one hand, and take conservative risk
in stopping at the current node on the other. We address the risk
problem by designing a Local Bayes Risk Minimization (LBRM)
framework, which divides the prediction process into recursively
deciding to stop or to go down at each decision node by balancing
these two risks in a top-down fashion. Rather than setting a
global loss function in the traditional Bayes risk framework,
we replace it with different uncertainty in the two risks for
each decision node. The uncertainty on the precipitance risk and
the conservative risk are measured by information entropy on
children nodes and information gain from the current node to
children nodes, respectively. We propose a Weighted Tree Induced
Error (WTIE) to obtain the predictions of minimum risk with
different emphasis on the two risks. Experimental results on
various datasets show the effectiveness of the proposed LBRM
algorithm.

I. INTRODUCTION

With the advent of the big data era, we are often confronted

with a huge amount of categories in classification tasks. It pos-

es great challenges on finding a true class from these massive

candidate categories. Fortunately, a hierarchical relationship of

tree structure or directed acyclic graph (DAG) structure always

exists in these massive classes, such as the large taxonomies of

Google for web page classification, the semantic hierarchy of

ImageNet [1] for image classification, and the gene hierarchy

of National Center for Gene Research for gene classification.

Classes in the hierarchy have a parent-children relationship,

in which concepts are from the abstract to the concrete and

Fig. 1: A patient example illustrating the precipitance risk and

the conservative risk. The green node is the ground truth, while

the red node is the prediction with high risk.

granularities are from the coarse to the fine. We can utilize this

hierarchical relationship to realize more effective and efficient

classification, referred as hierarchical classification.

In recent years, hierarchical classification receives increas-

ing attention in gene classification [2], [3], [4], image classifi-

cation [5], [6], [7], [8], medical image annotation [9], [10] and

many other domains [11], [12]. Most of them predict a sample

starting at the root node with a coarse-grained category until

a leaf node with a fine-grained category is reached. However,

misclassification is inevitable if the information is insufficient

or huge uncertainty exists. In this scenario, we can stop the

sample at an internal node with a coarser category, instead

of predicting a wrong leaf node in the hierarchy (Fig. 2(a)).

To this end, it is of great significance to design an effective

stopping strategy.

Several studies have been devoted to designing stopping

strategies in the past few years. Sun et al. introduce this
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problem into hierarchical classification in [13] and utilize a

threshold method in [14] by setting a threshold for each class

node. They stop pushing the sample down to the next lower

level only if the probability is not greater than the threshold

of this level [12]. Ceci et al. [15] find the best values of these

thresholds by optimizing F1 score to encourage the samples

to go deeply. And they improve their algorithm by optimizing

the tree induced error (TIE) to leverage hierarchy information

in [16]. Deng et al. [17] first propose the accuracy-specificity

trade-off in hierarchical classification, obtaining the prediction

which maximizes the information gain while ensuring a fixed

accuracy guarantee. However, all of these researches ignore

an important issue: when predicting a sample at the current

decision node, the error is inclined to occur if large uncertainty
exists in the next lower level children nodes.

In this paper, we integrate this issue into a risk problem:

when predicting a sample at a decision node, it will take

precipitance risk in predicting to the next lower level children

node and take conservative risk in stopping at the current

node. For example, a patient with abdominal discomfort may

get a stomach trouble or have a heart disease, as shown in

Fig. 1. Suppose she has a heart disease in fact. She will be

faced with the precipitance risk and be sent to department of

digestive if the doctor has a smattering of the phenomenon

with large uncertainty. On the contrary, if the doctor is afraid

of misdiagnosing and asks her to have a thorough examination,

she will face the conservative risk of wasting time on useless

examinations due to the high risk of sudden heart attack. Our

goal is to obtain the prediction by balancing these two risks.
We address this risk problem by designing a local Bayes

risk minimization (LBRM) framework. Rather than setting a

global loss function in the traditional Bayes risk framework,

we replace it with different uncertainty for the two risks at the

current decision node. Based on these two risks, we decide

whether to permit a sample going down to the next lower

level or not. This process starts at the root node recursively

until a stopping decision is made or a leaf node is reached.

To measure the uncertainty on children nodes in the next

lower level, we utilize information entropy on all the posterior

probabilities of them, as illustrated in Fig. 2(b)(c). For the

measurement of the uncertainty on stopping at the current

node, we develop the idea of information gain by Deng et

al. [17] by calculating the decrease on numbers of leaf nodes

from the current node to its children nodes, shown in Fig.

2(d). To obtain the prediction of minimum risk emphasizing

differently on the two risks, we propose a weighted tree

induced error (WTIE) which extends the tree induced error

[22] by adding coefficients on corresponding precipitance error

and conservative error. The contributions of this work are

summarized as follows.

• We introduce the risk problem in stopping strategy for

hierarchical classification which seeks a balance between

the precipitance risk and conservative risk.

• We propose a local Bayes risk minimizing framework

(LBRM) which replaces the traditional loss function in

Bayes risk framework with the uncertainty in precipitance

(a) A simple tree hierarchy. (b) A prediction process with high
information entropy.

(c) A prediction process with low
information entropy.

(d) The loss of information gain at
a certain node.

Fig. 2: Illustration of how to measure the two risks. The

numbers in (b) and (c) are the posterior probabilities of the

nodes, while the numbers in (d) is the information gain of

each node. The smile face represents the final decision.

risk and conservative risk on each decision node.

• We introduce information entropy to measure the un-

certainty on children nodes in the next lower level in

stopping strategy of hierarchical classification.

• We design a new metric weighted tree induced error

(WTIE) which puts different emphasis on precipitance

error and conservative error.

The rest of this paper is organized as follows. Section

II reviews some related work briefly. Section III introduces

preliminary knowledge for this paper. Section IV shows the

details of the proposed LBRM algorithm and how to measure

the uncertainty in the precipitance risk and the conservative

risk. Experimental results on various datasets are presented in

Section V. Finally, we conclude our work in the last section.

II. RELATED WORK

There are some related studies on the issue of stopping strat-

egy in hierarchical classification. Sun et al. [13] introduce the

stopping strategy as predicting on all nodes in the hierarchy.

To decide whether to stop at the internal nodes or leaf nodes,

thresholds are set to each class node in the hierarchy. If the

posterior probabilities or confidence scores are greater than

the threshold on the corresponding class, the samples are sent

to the classifiers on next lower level. Roughly speaking, they

can be categorized into three classes.

Firstly, some researches try to avoid misclassification by

predicting categories with coarser granularity. Selective rejec-

tion prediction [18], [19], [20] refuses to classify when the

classifier is confused. Deng et al. extend it to hierarchical clas-

sification for comparison experiments in [17]. This algorithm
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predicts the leaf node class with the largest probability if it is

not below a global threshold and stops at the root node oth-

erwise. These strategies often make “right“ decisions because

all of the ancestor classes can be regarded as generalization

of the leaf-node class. However, too conservative prediction,

such as predicting the sample on the root node, takes high risk

in losing information, as discussed above.

To overcome this problem, the second kind of strategy

encourages samples to go more deeply in the tree hierarchy.

Sun et al.[14] and D’Alessio [21] achieve this goal by reducing

the thresholds of upper levels optimized by flat F1 score. The

differences between these two algorithms is that [14] uses one

threshold per level and optimizing macro F1 score, while [21]

assigns one specific threshold to each node and optimizes TP

(True Positive) minus FP (False Positive) score. Ceci et al.[15]

develop the reject option to all of the class nodes in hierarchy

instead of the root node only. Although these methods provide

predictions with more information, they are inclined to make

more wrong decisions in the process of letting samples going

down through the hierarchy. If information is insufficient or

huge uncertainty exists, predictions with this kind of stopping

strategy will take precipitance risk in classification.

To solve the problems of the two kinds of methods above, a

balance is sought in some researches. Deng et al.[17] propose

Dual Accuracy Reward Trade-off Search (DARTS) algorithm

which optimizes trade-off between hierarchical accuracy and

specification described as information gain in the paper. By

maximizing the information gain while maintaining a given

hierarchical accuracy, this work integrates the advantages of

both the first and the second kind of strategies. Ceci et al.[16]

optimize the tree instance (or tree induced error [22]), which

measures the distance between the prediction and the ground

truth. However, all of these researches ignore the uncertainty

of the next lower level on predicting a sample at the current

level class, where the error is inclined to occur.

Furthermore, our work is also related with some methods

applied in other hierarchical classification issues. Stopping the

classification at a specific node can also be considered as a

problem of finding the best path in the hierarchy from the root

to the leaves. Sun et al. [23] and Qu et al. [24] address this

problem by calculating the scores of each path. Specifically,

they select the candidate paths of a required number from the

first level to the current decision level. But, they just aim to

solve mandatory leaf nodes prediction problem [12] that all the

predictions are the leaf nodes and cannot address the problem

of stopping strategy.

Besides, hierarchical multi-label classification has relation-

ship with our work. Cesa et al. [25] use H-Loss as an

optimization metric in threshold learning. This method can

make prediction more conservatively, as it penalizes only the

error nodes at the uppermost level for multiple labels of one

sample. Triguero et al. utilizes H-Loss for threshold learning

in [26]. To solve the disadvantage of H-Loss, Bi et al.[27]

proposes a new loss function called hierarchical multi-label

classification loss (HMC-Loss), which takes all the error nodes

into account. HMC-Loss is applied in a Bayes risk framework

to find the final prediction class, but it is not suitable for

stopping strategy in hierarchical classification. Some other

loss functions used in multi-label classification are discussed

comprehensively in [28]. But these methods are all designed

to solve multi-label classification problem. As for the field

of stopping strategy in hierarchical classification, they just

encourage all samples to go to leaf nodes as the second

strategy we have introduced before.

III. PRELIMINARIES

A. Class Hierarchy

There are two kinds of structures in class hierarchy, tree and

directed acyclic graph (DAG). We focus on tree hierarchy for

easy understanding.

A tree hierarchy organizes the class labels into a tree-like

structure to represent a kind of “IS-A” relationship between

labels [29]. Specifically, Kosmopoulos et al. points out that

the properties of the “IS-A” relationship can be described as

asymmetry, anti-reflexivity and transitivity [30]. We define a

tree as a pair (D,≺), where D = {d1, d2, ...} is the set of

class labels and “≺” denotes the “IS-A” relationship. The three

properties of this relationship are formulated as follows:

(1) Asymmetry: if di ≺ dj then dj ⊀ di for ∀di, dj ∈ D;

(2) Anti-reflexivity: di ≺ di for ∀di ∈ D;

(3) Transitivity: if di ≺ dj and dj ≺ dk, then di ≺ dk for

∀di, dj , dk ∈ D;

Generally, there are several types of nodes in a tree hierar-

chy. For node di:
(1) Its parent node is denoted by pi;
(2) Its children nodes is denoted by Ci, and |Ci| denotes

the number of children nodes of di;
(3) Its ancestor nodes is denoted by An(di), and |An(di)|

denotes the number of ancestor nodes of di;
(4) Its leaf nodes are denoted by Le(di), and |Le(di)|

denotes the number of leaf nodes of di. Specially, L denotes

the leaf nodes of the tree, and |L| denotes the number of all

leaf nodes.

B. Hierarchy Constraints and Augmented Set of True Classes

In hierarchical classification, for a given sample si = (x, y),
x is the sample data, and y is the corresponding label. In a

hierarchy, labels in higher levels represent more general classes

and labels of lower levels correspond to more specific classes.

If a given sample belongs to a certain class, it must belong

to the ancestor nodes of this class, i.e., if si(x) = y then

si(x) ∈ An(y). To this end, it is intuitively right to assign a

sample to its ancestor classes of the true class. [30] defines

this as augmented set of true classes, i.e., Yaug = An(y).

C. Information Gain in Hierarchical Classification

Information gain measures the decrease of uncertainty by

adding some information to the decision process. In hierarchi-

cal classification, it can be described as the decrease in number

of nodes when taking a step forward from the current level to

the next introduced by Deng et al. [17]. The information gain
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in hierarchical classification at node v can be defined formally

as the following formula:

I(v) = H(Y )−H(Y |v)
= log|L| − log|L(dv)|.

(1)

As we assume that the true labels are all at the leaf nodes

and all the nodes are of equal significance, the uncertainty can

be measured by the number of the corresponding leaf nodes.

D. Bayesian Decision Theory in Hierarchical Classification

Bayesian Decision Theory [31] calculates risks of all pos-

sible actions by multiplying posterior probabilities and loss

function. The former comes from Bayes formula and the latter

is set according to different scenarios. Typically, in hierarchical

classification, we calculate the risks of all possible prediction

nodes and choose the one of the minimum risk.

Formally, given the true label y, predicted label ŷ, nodes

set D in tree T and data x at node v, the loss function can be

written as l(y, ŷ), where ŷ can be any node in D.

The posterior probability of the predicted node through the

corresponding classifier is denoted as P (y|x). Thus we can

obtain the Bayesian risk function:

R(ŷv) =
∑
y

l(ŷ, y)P (y|x) (2)

For all the possible predicted nodes, we evaluate the risk

for each node and predict the node with minimum risk:

ŷ = argminŷv
(R(ŷ)), (3)

where v ∈ D.

IV. LOCAL BAYES RISK MINIMIZATION

A. Measuring uncertainty in prediction

Traditionally, a global loss function is applied in Bayes

risk framework to measure risk. However, In the scenario

of stopping strategy, uncertainty brings risks at each decision

node in stopping or going down. The loss on each node should

be treat differently.

On one hand, we observe that misclassification often occurs

if the posterior probabilities of several classes in the next lower

level are very close. In this scenario, the classifier is hard to

distinguish them successfully. Recall the example in Fig. 1,

if we just know that the patient has abdominal discomfort, it

is not easy to distinguish whether to guide her to department

of digestive or department of cardiology. This is a low-level

classification uncertainty for classifier on the current node.

Information entropy can measure the uncertainty that a discrete

random variable contains. Given a discrete variable x with

possible values {x1, x2, · · · , xn}, the information entropy is

explicitly written as:

H(x) =
n∑

i=1

−p(i)logp(i), (4)

where p(i) is the probability of the value xi.

In our case, the discrete random variable is the posterior

probabilities of all children nodes provided by the classifier

of the parent node. Formally, given a nonleaf node v and the

sample x, the classifier Cv at node v provides probabilities

{p1, p2, · · · , pi}, corresponding to ith children node c(i) of

the node v. The information Entropy of node v is:

LM
v (x) =

|Cv|∑
i=1

−p(c(i))logp(c(i)). (5)

On the other hand, if we make a prediction of stopping

a sample at the current node to maintain great uncertainty,

information provided by the lower level node will be lost.

This uncertainty of conservative prediction brings risk to our

prediction. Recall the example in Section I, if the patient with

a heart attack be sent to the inpatient department, she will have

huge uncertainty on her sickness. We can use information gain

from the current node to the next lower level node to measure

this uncertainty. This uncertainty of conservative prediction

can be written as:

LG
v (x) = I(u)− I(v), (6)

where I(u) is the information gain of the children node from

the root node, I(v) is the information gain of the current node

from the root node.

B. Local Bayes Risk Minimization (LBRM)

A top-down hierarchical classification process is obtaining

a prediction at each decision node until a leaf node is reached.

Thus we can design a stopping strategy by dividing this pro-

cess into a recursive binary decision on each node, i.e, stopping

or going down. For each decision node v, if we consider all

children nodes of equal importance, the candidate children

nodes can be narrowed to the node of maximum posterior

probability. To this end, we propose a Local Bayes Risk

Minimization (LBRM) framework, which utilizes Bayesian

decision theory to choose the action of the minimum risk. By

balancing precipitance risk and conservative risk, it decides

if the sample is stopped at the current node or sent to the

children node of the maximum probability.

In LBRM, we need compare the precipitance risk and the

conservative risk at each decision node. For the precipitance

risk, we measure its uncertainty with information entropy. At

each nonleaf node v, the loss function of precipitance risk is

computed with (5), and we can obtain the risk integrated into

Bayesian decison theory based on (2) and (3):

RM
v (x) = [

|Cv|∑
i=1

−p(c(i))logp(c(i))]p(u|x), (7)

where p(u|x) is the maximum posterior probability of the

children node in Ci, and u is the corresponding node in Ci as

there are only two action nodes in the transformed problem.

For the conservative risk, we compute information gain from

the current node to the children node as the loss function:
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RG
v (x) = log

|L(dv)|
|L(du)|p(v|x), (8)

where p(v|x) = 1 − p(u|x).To balance precipitance risk and

conservative risk at one specific node, we add a coefficient λ
to get the minimum risk. When a sample arrives at v, we can

just use the transformed formula based on (1),(4), (5) and (6)

to decide whether to let the sample goes down or stop at v:

Rt
v(x) = log

|L(dv)|
|L(du)|p(v|x) + λ[

|Cv|∑
i=1

p(c(i))logp(c(i))]p(u|x),
(9)

where p(u|x) + p(v|x) = 1. According to (9), we assign the

sample x to the current node v if the value of (9) ≥ 0 or

push it down to the children node of the maximum probability

otherwise, i.e.,

Φv(x) =

{
0 Rt

v(x) > 0

1 otherwise.
(10)

Calculating (10) from the root node to leaf nodes recursive-

ly, we can obtain the final prediction.

C. Optimization

Parameter λ balances the precipitance risk and the conserva-

tive risk, thus we can optimize it to get predictions meeting the

need of different scenarios for these two risks. Tree induced

error (TIE) [22] measures the error of prediction by calculating

the distance in tree between prediction and real label, which

reflects the error degree in a tree hierarchy. Errors can be

categorized into precipitance error and conservative error. The

former measures the errors not in the augmented true label

set, while the latter measures those in the set but on a more

general class. In some scenarios, we need to treat these two

kinds of errors differently. However, TIE regards these two

types of risk equally important. To this end, we modify the

tree induced error to the weighted tree induced error (WTIE),

which can set different weights to the precipitance error and

conservative error:

WTIE =
1

NS
∗ (αTM + βTG), (11)

subject to α+ β = 2,

where NS denotes the number of sample, TM denotes the TIE

of prediction ŷ for the sample x /∈ Yaug , while FG denotes

ŷ ∈ Yaug . TM and TG measure the precipitance error and

the conservative error, respectively. So we can put different

emphasis on these two kinds of risk through α and β.

Typically, when α = β = 1, the weighted tree induced

error is the traditional tree induced error. When α = 0, β = 2,

the weighted tree induced error just penalizes the conservative

error. When α = 2, β = 0, the weighted tree induced error

just penalizes the precipitance error.

In the prediction process, if we pursuit the decisions with

sufficient information even maybe the wrong one, just take

out the low-level classification uncertainty into account and

all the samples will reside in leaf nodes. On the other hand, if

we cannot stand any risk of misclassification, just ignore the

low-level uncertainty. By optimizing the WTIE of different

weights, we can obtain series of predictions which taking this

two risks into account to different degrees.

Our goal is to optimize the WTIE while ensuring that the

risk of the node in lower level is lower than that of its parent

node. Especially, we regard the root node itself as its parent

node. And the optimizing objective is:

minimize WTIE, (12)

subject to Rt
v < Rt

pa(v),

where v ∈ node set D = {d1, d2, ..., dn}.
It is pointed out by [32] that optimizing the TIE is not a

convex optimization problem, so as to the WTIE. Furthermore,

the variables in the objective function are discrete, which

cannot be solved by convex optimization. Fortunately, this

problem has a global optimal solution as the value of the

WTIE first decreases when λ is small and then increases with

the increment of λ. This is because when the λ is small the

sample is pushed down to the lower-level nodes with much

precipitance risk; when the λ is too large, the sample is

blocked at the higher-level nodes with much conservative risk.

Only balancing these two kinds of risk can get the prediction

of minimum risk.

To this end, we turn to random optimization methods to

obtain the global optimal solution, such as generic algorith-

m (GA). Inspired by the process of natural selection, GA

starts from a population of randomly generated creatures and

reproduces iteratively. In each iteration, the fitness of every

creature in the population is evaluated. The fit individuals are

stochastically selected from the current population, and the

genome of each creature is modified to form a new generation.

Iteration terminates when a solution is found that satisfies

minimum criteria or the fixed number of generations set by

user is reached [33].

In our case, the fitness function of GA is our objective

function (12), and we can optimize it to find the global optimal

solution. However, GA has a disadvantage that it converges

slowly if the candidate search space is very large. To reduce

the time cost of this process, we try to derive the bounds of

parameter λ.

Recall (9) is the transformed risk function at a node v. If

Rt
v(x) of a sample is larger than 0, we push it down to the

children node of the maximum probability and stop it at v. We

can obtain a relative narrow search bound for optimization of

parameter λ.

We summarize LBRM in Algorithm 1. Given the input data

vector X , tree hierarchy T and trained classifiers CT , we

first obtain all posterior probabilities p(y|x) via CT , where

proot(y|x) = 1. We get the precipitance risk RM
v (x) and

conservative risk RG
v (x) of the root node from (6) and (8),

respectively (step 3-6). Then we get the decision of the root

node by (9) and (10) with parameter λ (step 7). By recursively
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proceed this process, we obtain the final prediction. Given

the user-defined α and β, we optimize parameter λ through

GA algorithm until the maximum iteration number is reached.

In the GA iteration process, we calculate the WTIE in each

iteration and finally choose the parameter with the minimum

WTIE. And we can obtain a set of predictions emphasizing

on different risks through various combinations of α and β.

Algorithm 1 Local Bayes Risk Minimization (LBRM)

Input: data vector X = {x1, x2, ..., xn},
tree hierarchy T , trained classifiers CT = {CT1, CT2, ..., CTs},

Output: predictions Pfinal,
1: Obtain all p(y|x), y ∈ L except the root via CT .
2: for v from the root to the leaves do
3: Get LM

v (x) =
∑|Cv|

i=1 −p(c(i))logp(c(i)),

4: Calculate RM
v (x) = [

∑|Cv|
i=1 −p(c(i))logp(c(i))]p(u|x),

5: Get LG
v (x) = I(u)− I(v),

6: Calculate RG
v (x) = log

|L(dv)|
|L(du)|p(v|x),

7: Obtain Φv(x) through Rt
v(x),

8: end for
9: Get the predictions Pc,
10: bestWTIE = inf ,
11: α = a,
12: β = b,
13: Pfinal = Pc,
14: for user-defined α, β do
15: while iteration number < max iteration number do

16: use GA with lower bound
log

|L|
|L|−1

−logCm
and upper bound

log|L|
Hmin

17: to find a optimal λ:
18: Calculate WTIE,
19: if WTIE < bestWTIE then
20: bestWTIE = WTIE,
21: Pf inal = Pc,
22: end if
23: end while
24: end for
25: return Pfinal

Obviously, if we ignore the precipitance risk, the sample

will go down until a leaf node is reached. That is to say,

λ = 0 can be a lower bound for the search space. Now we

consider the upper bound that makes the sample stop at the

node on upper level. The optimal solution then can be obtained

through GA with the search bound.

We aim to find the λ that makes (9) < 0, so we can

transform the equation into:

λ <
−log

|L(dv)|
|L(du)|p(v|x)

[
∑|Cv|

i=1 p(c(i))logp(c(i))]p(u|x)

=
−log

|L(dv)|
|L(du)|p(v|x)

HCv
(x)p(u|x)

(13)

Information entropy measures the uncertainty of random

variable X . In our case, the posterior probability of each

c in Cv is such random variable that we can describe the

uncertainty in it. As we know, information entropy reaches

the maximum value if the random variable respects a uniform

distribution, i.e., the posterior probabilities are equal of all the

label nodes. Furthermore, the more the number of nodes is,

the larger the information entropy is. Thus we can maximize

the information entropy to obtain a tighter lower bound based

on (13):

HCv (x) = [

|Cv|∑
i=1

p(c(i))logp(c(i))]p(v|x)

< Cm ∗ −1
Cm

∗ logCm

= −logCm,

(14)

where Cm is the maximum number of the children nodes that

one node has in the tree.

Furthermore, to obtain a lower bound, we minimize the

information gain loss of (8) by assuming Cm = |L| − 1. Thus

the lower bound based on (13) and (14) is:

BL =
log

|L|
|L|−1

−logCm
. (15)

Moreover, we need maximize (8) by assuming Cm = 1.

However, we have to calculate the minimum value of infor-

mation Hmin through the sample x as the minimum value

of information entropy is zero. Thus we can obtain the lower

bound:

BU =
log|L|
Hmin

. (16)

Given the upper bound and the lower bound, we can find

the optimal λ in the large search space more efficiently.

V. EXPERIMENTS

A. Datasets

We perform our experiments on four datasets with tree-

structured hierarchies (TABEL I):

• VOC [34]: It is a PASCAL visual object classes dataset

which is a benchmark in visual object category recogni-

tion and detection. The tree hierarchy in this dataset is

five-level.

• Cifar-100 [35]: This is an image datasets containing

60000 samples in 100 classes, with 600 images in each

class. Its tree-structured hierarchy has three levels and 21

internal nodes with no samples.

• SUN [36]: This is a scene understanding datasets with

397 kinds of scenes. The original dataset has a completed

four-level tree taxonomy. In the tree taxonomy, the second

level contains 3 superordinate categories and the third

level has 15 basic-level categories. We modify it by

leaving out the categories that has more than one parent

labels and samples with multiple labels. Finally SUN

dataset turns into 324 classes with at least 100 images

per category.

• ILSVRC65 [17]: This is a subset of ImageNet with 65

classes and four-level tree taxonomy.
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TABLE I: Datasets description.

Datasets #Sample #Class #Leaf Depth
VOC 34828 30 20 5

Cifar-100 60000 121 100 3
SUN 90212 343 324 4

ILSVRC65 17100 65 57 4

B. Implementation

Data preprocessing. To represent the images, we use the

GIST features for VOC and cifar-100 dataset, LLC features

from densely sampled SIFT for ILSVRC65 dataset, VGG16

features for SUN dataset.

Classifier training. We train a logistic regression multi-

class classifier for each nonleaf node and use liblinear toolbox

[37] for implementation. For classification scheme, we follow

the top-down fashion that a given sample traverses the tree

hierarchy from the root node to one of the leaf nodes.

Dataset split. We split each dataset into training subset,

validation subset and testing subset randomly, using 64%,

16%, 20% of data, respectively.

All experiments are executed on an Windows 8 operating

system of Intel Core i7-600 running at 3.40GHz with 16 GB

memory.

C. Comparison Methods

Dual Accuracy Reward Trade-off Search (DARTS): it maxi-

mizes the information gain while maintaining a certain hierar-

chical accuracy. Specifically, it first finds the search bound

which ensures a hierarchical accuracy threshold preset by

users, and then searches for the solution of the maximum in-

formation gain until the maximum iteration number is reached.

Threshold-TIE (TH-TIE): TH-TIE is a threshold-based

method which takes hierarchy information into account by

optimizing the traditional tree induced error [16]. It selects

thresholds from a candidate set consisting of posterior prob-

ability values. As it is of high computational cost to find a

global optimal solution in threshold-learning-based algorithm,

we learns a specific threshold for nodes at the same level. By

limiting the bounds of all candidate threshold values, we obtain

the predictions of different TH-TIE with dynamic values of

hierarchical accuracy.

Threshold-Rejection (TH-REJ): TH-REJ is a threshold-

based method developing from the selective rejection method

of flat classification [17]. It sets a global threshold and predicts

the root node if the posterior probability of the prediction at the

leaf node lower than this threshold. Obtaining different values

of hierarchical accuracy with this algorithm can be achieved

by setting different bounds of the global threshold.

Standard Top-Down Hierarchical Classification (STD): This

is the standard and classical hierarchical classification with all

the labels residing in the leaf nodes. At each nonleaf node

from the root, STD predicts a sample to a children node of

the maximum posterior probability and proceeding this process

recursively until a leaf node is reached.

Rejection-Root (REJ-RT): REJ-RT makes conservative de-

cisions by only predicting the root node for all of the samples.

D. Evaluation Metrics

In the scenario of hierarchical classification, hierarchy in-

formation should be taken into account when evaluating the

performance of algorithms, instead of metrics applied in flat

classification. Specifically, we use three hierarchical metrics

as follows:

Weighted Tree Induced Error (WTIE): WTIE is introduced

in Section IV, and we use it to measure the degree of errors

with different emphasis on the precipitance error and the

conservative error.

Hierarchical Accuracy (HA): HA adds all the ancestor nodes

of the real label nodes to the real label set, i.e. the real label

nodes and its ancestors are considered to be ground truth [17].

Hierarchical F1 Score (HF): HF extends traditional F1

score to a hierarchical version. It extends the real label and

predicted labels to corresponding augmented set, respectively.

It represents the overall performance on both hierarchical

accuracy and information obtained in predictions [30].

E. Experimental Results and Discussion

We compare all algorithms in four datasets with tree hierar-

chy. Note that we try to focus on the risk problem of stopping

strategy in hierarchical classification, thus interpret the issue

on tree hierarchy only. Actually our algorithm can deal with

the DAG hierarchy as well. We first transform the proposed

WTIE to the traditional TIE by setting both the parameters α
and β as 1.0 for the common case and then test with different

combinations of α and β . We run all the algorithms including

the proposed one and the comparisons ten times, and calculate

the average mean value of all metrics.

Results of the best WTIE on four datasets. From TABLE

II we can see that the WTIE of STD and REJ-RT are both

significantly higher than other algorithms. This result infers

that it is dangerous for predicting either too informative or

too conservative. On one hand, More informative predictions

pushes all samples to the leaf nodes. However, it is challenging

and struggling for distinguishing all the fine-grained classes

of high uncertainty in the whole predicting process. On the

other hand, the WTIE is also very high if the predictions are

too conservative, as the conservative error is dominant overall

even the precipitance error is zero. Furthermore, TH-REJ also

performs poorly by assigning samples to the root node or one

of the leaf nodes, as shown in TABLE II. This indicates that it

is ineffective for only leveraging the root node and leaf nodes

bring high risk on the predictions. As the performance of STD,

REJ-RT and TH-REJ are poorer than others obviously, we will

compare the state-of-the-art algorithms DARTS, TH-TIE and

LBRM only.

Results on VOC dataset. VOC dataset has a deep five-level

tree hierarchy. It is essential and representative for testing the

performance of stopping strategy as performance gap becomes

larger on the hierarchy of a deep tree.

Fig. 3 is the result of Weighted Tree Induced Error - Hi-

erarchical Accuracy curve (WTIE-HA). This curve can reflect

the overall performance in terms of hierarchical accuracy

and errors in a tree structure. Given a certain hierarchical
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(a) VOC (b) Cifar-100 (c) Sun (d) ILSVRC65

Fig. 3: WTIE-HA curve of three algorithms on four datasets (α = β = 1).

(a) VOC (b) Cifar-100 (c) Sun (d) ILSVRC65

Fig. 4: HF-HA curve of three algorithms on four datasets (α = β = 1).

TABLE II: Results of the best WTIE on four datasets (α =
1, β = 1).

Algorithms VOC Cifar-100 SUN ILSVRC65
STD 2.4175 2.8575 0.7994 1.8535

REJ-RT 2.2697 2.0000 2.0000 3.0000
DARTS 2.0562 1.9257 0.6899 1.2263
TH-TIE 2.0420 1.9085 0.7411 1.4754
TH-REJ 2.2680 1.9445 0.7979 2.2890
LBRM 1.9136 1.8880 0.6450 1.1939

accuracy value by a set of predictions, we can find the

corresponding WTIE value. The smaller the area enclosed by a

curve and coordinate axes, is the better the performance of an

algorithm is. Fig. 4 is the result of Hierarchical F1 Score curve

- Hierarchical Accuracy (HF-HA). This curve can describe

the overall performance of both specificity and accuracy in

hierarchical classification. Neither too conservative nor too

aggressive but wrong decisions will get better evaluations on

this metric. The curve with a larger area enclosed by a curve

and coordinate axes performs better that which with a small

one.

We can see from Fig.3(a) that our proposed LBRM algorith-

m outperforms the DARTS algorithm and TH-TIE algorithms

6.3% for the best performance. Different from the static

standard metrics in hierarchical classification, the point of

minimum risk in the curve varies from different algorithms.

For example, the optimal WTIE reaches the point where the

HA gets lower than 75% in DARTS and our proposed algo-

rithm, and larger than 75% in TH-TIE algorithm. Furthermore,

DARTS outperforms TH-TIE where the HA is larger than

73%, inferring that DARTS is used in the application requiring

high accuracy. Our LBRM outperforms those two state-of-the-

art algorithms obviously for all hierarchical accuracy required.

Fig. 4(a) demonstrates that the overall performance of

LBRM is better than the two state-of-the-art algorithms. result

shows that LBRM algorithm is neither not too precipitate but

wrong nor too conservative. Note that the HF-HA curve keeps

going down in the figure with the increase of hierarchical

accuracy because the hierarchical F1 score weighs the pre-

cision and recall equally, the decrease in recall exceeds the

increase in precision. Besides, the HF-HA curve first goes up

and then goes down. We see the decreasing trend in the figure

only because of the intervals we select. The result of a typical

example is shown in Fig. 7.

Results on Cifar-100 dataset. Cifar-100 dataset is a large

dataset with three-level tree hierarchy, thus the result can

reflect the performance on a large dataset with shallow tree

hierarchy. From Fig. 3(b) and TABLE II we can see that

our algorithm LBRM performs better than the other two

algorithms in general. Furthermore, the minimum WTIE is

better than the other two algorithms by at least 1.1%. Fig. 4(b)

demonstrates that the overall performance of our algorithm

also outperforms DARTS and TH-TIE.

Results on SUN dataset. Testing on SUN dataset can reflect

the performance on a large dataset with deeper tree hierarchy.

The WTIE-HA curve and the HF-HA curve are shown in Fig.

3(c) and Fig. 4(c), respectively. It is clear that our algorithm

is better than the other two comparison algorithms not only in

the WTIE but also in the HF score.

Results on ILSVRC65 dataset. It is a subset of ImageNet

which can reflect the features of this large-scale dataset. The

results can reflect the performance on a large-scale dataset

to some degree. Experimental results of the WTIE-HA curve

and the HF-HA curve are shown in Fig. 3(d) and Fig. 4(d),

respectively. Our LBRM shows advantages on both of risk

and overall performance over the other two algorithms on

most of the intervals of HA. Different from the results above,

the performance of DARTS is a little better than ours where

hierarchical accuracy is at 93%.

Results on various risks. The WTIE is proposed in this

paper to weigh differently on the precipitance error and the
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(a) VOC. (b) Cifar-100. (c) Sun. (d) ILSVRC65.

Fig. 5: WTIE-HA curve of four datasets (α = 0.5, β = 1.5). Results show the performance emphasizing on conservative error.

(a) VOC. (b) Cifar-100. (c) Sun. (d) ILSVRC65.

Fig. 6: WTIE-HA curve of four datasets (α = 1.5, β = 0.5). Results show the performance emphasizing on precipitance error.

conservative error. We test LBRM, DARTS and TH-TIE on

four datasets with α = 0.5, β = 1.5 and α = 1.5, β = 0.5
to show the performance of the three algorithms on different

scenarios of errors. The results are shown in Fig. 5 and Fig.

6, respectively. The WTIE-HA curve demonstrates that our

proposed LBRM algorithm is better in general.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the risk problem of

stopping strategy in hierarchical classification containing the

precipitance risk and the conservative risk. We propose a local

Bayes risk minimization framework (LBRM) to address this

problem. For each decision node, it balances these two risks

based on Bayesian decision theory. The final prediction can

be obtained by proceeding this process from the root node

recursively. Uncertainty is used to replace the global loss

function in the traditional Bayes risk minimization framework

as it can describe the risk taken in the predicting process more

appropriately. We utilizes information entropy to measure

precipitance risk, which takes the information of the next

lower level children nodes into account advantaging over

other methods. For conservative risk, the loss of information

gain from the current node to its children nodes is used to

measure the uncertainty of stopping the sample going down.

As we need emphasize differently on the two risks in various

applications, weighted tree induced error (WTIE) is proposed

to address this issue. Experiments on several datasets show

the effectiveness of our method compared to the state-of-the-

art algorithms.

It is time-consuming to find the global optimal solution

and can only reach a local optimum solution sometimes in

this work. In the future, we will design a more efficient

optimization method for the WTIE.
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