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Abstract
Modeling data as points on non-linear Rieman-
nian manifolds has attracted increasing attention-
s in many computer vision tasks, especially visu-
al recognition. Learning an appropriate metric on
Riemannian manifold plays a key role in achieving
promising performance. For widely used symmet-
ric positive definite (SPD) manifold and Grassmann
manifold, most of existing metric learning methods
are designed for one manifold, and are not straight-
forward for the other one. Furthermore, optimiza-
tions in previous methods usually rely on compu-
tationally expensive iterations. To address above
limitations, this paper makes an attempt to propose
a generalized and efficient Riemannian manifold
metric learning (RMML) method, which can be
flexibly adopted to both SPD and Grassmann mani-
folds. By minimizing the geodesic distance of simi-
lar pairs and the interpoint geodesic distance of dis-
similar ones on nonlinear manifolds, the proposed
RMML is optimized by computing the geodesic
mean between inverse of similarity matrix and dis-
similarity matrix, benefiting a global closed-form
solution and high efficiency. The experiments are
conducted on various visual recognition tasks, and
the results demonstrate our RMML performs favor-
ably against its counterparts in terms of both accu-
racy and efficiency.

1 Introduction
Many works on computer vision tasks (e.g., visual tracking,
action recognition, and motion segmentation) have shown
methods built on non-linear manifolds are superior to ones
in Euclidean space. Among them, Riemannian manifold
of symmetric positive definite (SPD) matrices [Pennec et
al., 2006; Tuzel et al., 2008; Caseiro et al., 2011; Ha-
randi et al., 2012; Li et al., 2013; Caseiro et al., 2013;
Huang et al., 2015b; Jayasumana et al., 2015; Wang et al.,
2016; Harandi et al., 2017] and Grassmann manifold [Ham-
m and Lee, 2008; Harandi et al., 2011; Turaga et al., 2011;
Harandi et al., 2014b; Huang et al., 2015a; Jayasumana et
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al., 2015] are two most widely used manifolds in comput-
er vision community. The SPD matrices capture high order
statistics of data, and have several different forms, e.g., co-
variance region descriptors of images [Tuzel et al., 2008],
covariance matrices of image sets [Wang et al., 2012], re-
sulting matrix of Gaussian distribution [Wang et al., 2017],
and structure tensors [Caseiro et al., 2011]. Grassmann
manifold is a special type of Riemannian manifold, which
is composed of sets of linear subspaces with the same di-
mensionality in Euclidean space [Jayasumana et al., 2015;
Huang et al., 2015a].

Existing metric learning methods on SPD manifold and
Grassmann manifold can be roughly divided into three cate-
gories in terms of projection space, i.e., from manifold to tan-
gent space [Li et al., 2013; Huang et al., 2015b], from man-
ifold to Reproducing Kernel Hilbert Space (RKHS) [Ham-
m and Lee, 2008; Harandi et al., 2011; 2012; Jayasumana
et al., 2015] and from manifold to low-dimensional mani-
fold [Huang et al., 2015a; Harandi et al., 2017]. The method-
s based on projection of tangent space make traditional Eu-
clidean methods workable on non-linear manifolds, but they
do not take full advantage of geometry structures of mani-
folds. The methods projecting data points on manifolds into
RKHS via some kernel functions seem make sense, howev-
er they are high computational cost and not scalable to large
scale problems. In addition, some methods aim at learning
metric to project original manifold to a more discriminative
manifold [Harandi et al., 2017; Huang et al., 2015a] with full
consideration of geometry structure of manifold. Although
various metric learning methods have been studied on non-
linear manifolds, aforementioned methods are only designed
for a specific type of manifold. Furthermore, most existing
methods rely on optimization problems requiring computa-
tionally expensive iterations, where complex Riemannian op-
erations usually are performed.

Towards addressing above problems, we propose a gener-
alized and efficient Riemannian manifold metric learning (R-
MML) method, which is adopted on both SPD manifold and
Grassmann manifold. Inspired by Euclidean metric learning
method [Zadeh et al., 2016], our manifold metric learning
method is formulated as seeking a transformation matrix to
minimize sum of geodesic distances of all similar pairs and
the interpoint geodesic distances of all dissimilar ones on ei-
ther SPD manifold or Grassmann manifold. It is both strict-
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ly convex and strictly geodesically convex. To optimize our
RMML, we first demonstrate the similar and dissimilar ma-
trices associated with data points on manifolds are symmetric
positive semi-definite, then the global closed-form solution of
our proposed RMML can be achieved by computing matrix
geometric mean between inverse of similarity matrix and dis-
similarity matrix. It is worth mentioning that, instead of cost-
ly Riemannian geometric mean in [Zadeh et al., 2016], we
compute matrix geometric mean using more efficient Log-
Euclidean Riemannian framework [Arsigny et al., 2007] to
further improve efficiency. The experimental results on image
set classification, video based face recognition, and materi-
al classification tasks demonstrate the favorable performance
and high efficiency of our RMML method against the state-
of-the-art counterparts.

2 Related Work
Metric learning on SPD manifold. Affine Invariant Rieman-
nian metric (AIRM) [Pennec et al., 2006] and Log-Euclidean
Riemannian metric (LERM) [Arsigny et al., 2007] are wide-
ly used to handle SPD matrices. The LERM framework maps
SPD manifold to its tangent space (a linear space) through
the matrix logarithm, performing more efficient than AIRM
framework, so many methods on SPD manifold are developed
based on LERM. To learn the metric for d× d SPD matrices,
methods in [Sivalingam et al., 2009; Carreira et al., 2012;
Vemulapalli and Jacobs, 2015] firstly embed an d × d SPD
matrix into its tangent space (a d(d + 1)/2 dimensional lin-
ear space) under LERM framework, then perform classi-
cal Euclidean metric learning methods. Instead of learning
metric in tangent space, methods in [Huang et al., 2015b;
Harandi et al., 2017] learn intrinsic metrics to project original
SPD manifold to a more discriminative SPD manifold char-
acterized by MΣMT with a transformation matrix M for
SPD matrix Σ. In contrast to above methods, kernel-based
methods [Wang et al., 2012; Quang et al., 2014] exploit some
kernel functions to map SPD matrices into a reproducing k-
ernel Hilbert space (RKHS), where kernelized methods (e.g.,
linear discriminant analysis (kLDA) and partial least square
(kPLS)) are performed for discriminative learning.

Metric learning on Grassmann manifold. Compared to
metric learning methods on SPD manifold, metric learning
on Grassmann manifold are performed in either RKHS or the
original manifold. For kernel-based metric learning methods,
kernel functions are derived on Grassmann manifold to map
original space to a high-dimensional RKHS [Hamm and Lee,
2008; Harandi et al., 2011; 2014b; Jayasumana et al., 2015].
Therein, Grassmann Discriminant Analysis (GDA) uses Fish-
er criterion to learn a low-dimensional space mapping [Ham-
m and Lee, 2008]. Grassmann Graph-embedding Discrimi-
nant Analysis (GGDA) exploits the graph embedding strate-
gy to further improve the performance of GDA [Harandi et
al., 2011]. In [Jayasumana et al., 2015], projection Gaussian
kernel is derived and various applications in RKHS are dis-
cussed. Different from kernel-based methods, [Huang et al.,
2015b] learns a discriminative projection metric on the origi-
nal Grassmann manifold.

The formulation of the proposed RMML is quite differen-
t from existing ones on Riemannian manifold. Our RMML
method can learn intrinsic metrics on both SPD and Grass-
mann manifolds in the same formulation, which takes into
full consideration geometry structures of manifolds. More-
over, its optimization can be achieved by a global closed-form
solution benefiting high efficiency.

3 Parametric Riemannian Manifold Metrics
In this section, we first give a brief introduction of paramet-
ric metrics on SPD and Grassmann manifolds, which will be
adopted to our proposed RMML method.

3.1 Parametric Metrics on SPD Manifold
We use (M, d) to represent a Riemannian manifold, where
M is the topological space and d is the dimension of the
manifold. Notably, Riemannian metric is a family of inner
products on all tangent spaces and (M, d) is a differentiable
manifold equipped with a smoothly varying inner product on
each tangent space. It is well known that space of d× d SPD
matrices forms a Riemannian manifold endowed with a Rie-
mannian metric, called SPD manifold Sd

+. The LERM and
AIRM are two most commonly used metrics to match SPD
matrices. Although AIRM has better properties1, it suffers
from high computational complexity [Arsigny et al., 2007].
Therefore, we exploit LERM in this paper.

For a point S1 ∈ Sd
+, the set of all tangent vectors at S1

on Sd
+ constructs the tangent space of S1, denoted as TS1S

d
+.

Log-Euclidean metric exploits the Lie group structure of SPD
matrices, benefiting low computational cost [Arsigny et al.,
2007]. For two points S1, S2 on the SPD manifold Sd

+, the
logarithmic multiplication is defined as:

S1 � S2 = exp (log (S1) + log (S2)) , (1)

where log (·) and exp (·) are matrix logarithmic and exponen-
tial operations, respectively. Under LERM framework, expo-
nential and logarithmic maps can be represented in the forms
of matrix exponential and logarithmic operations, i.e.,{

expS1
(L) = exp(log(S1) +DS1

log .L).
logS1

(S2) = Dlog(S1) exp .(log(S2)− log(S1)).
(2)

Then, the scalar product between two elements V1 and V2 at
a point S is calculated as

〈V1,V2〉S = 〈DS log .V1, DS log .V2〉 . (3)

After that, the geodesic distance between two SPD matrices
is defined as:

dg(S1,S2) = ‖log (S1)− log (S2)‖2F . (4)

In this way, the geodesic distance on SPD manifold is con-
verted to Euclidean distance in the tangent space at identity
matrix with matrix logarithm. Please refer to [Arsigny et al.,
2007] for more details.

In our applications, we first compute SPD matrices for a
set of images or features (denoted as S = {S1,S2, ...,Sn}).
Let f : Sd

+ → Sr
+ be a smooth mapping from original SPD

1AIRM is affine invariant, while LERM is similarity invariant.
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manifold to a new manifold Sr
+. Thus, for a point Si, the

mapping of tangent space from Sd
+ to Sr

+ is defined as:

TF (Si) : TSi
Sd
+ → Tf(Si)S

r
+, (5)

where the mapping TF (Si) is an injection and mapping f is
a smooth map [Huang et al., 2015b]. Thus if we can find a
transformation M ∈ Rd×r of point Si from original tangent
space TSi

Sd
+ to space Tf(Si)S

r
+, geodesic distance between

Si ,Sj on original SPD manifold can be represented as:

dg (Si,Sj) =
∥∥MT log (Si) M−MT log (Sj) M

∥∥2
F
,
(6)

where MMT is a rank-r symmetric positive semi-definite
(SPSD) matrix ensuring that the converted space is a tan-
gent space of SPD matrices in the logarithm domain. Let
T = log (S), and Q = MMT . We can rewrite the formula-
tion (6) as:

dg (Ti,Tj) = tr((Ti −Tj)
T
Q (Ti −Tj) Q)

= tr (A (Ti −Tj) (Ti −Tj)),
(7)

where Q is a rank-r SPSD matrix, so A=QQ is also a rank-r
SPSD matrix. Given an SPD matrix S, we first embed it to
T with mapping function φ, e.g., matrix logarithm or square
root operation [Wang et al., 2017], then compare two SPD
matrices using Eq. (7). We can see that metric in Eq. (7)
involves the parameter A, which will be learned for more
discriminative matching or classification.

3.2 Parametric Metrics on Grassmann Manifold
Let G be an n-dimensional vector space, a Grassmann man-
ifold Gr(k,G) can be regarded as a set of all k-dimensional
subspaces in G, denoted as Gr(k, d)(k < d). An element on
Grassmann manifold Gr(k, d) is a linear subspace spanned
by a d × k full rank orthonormal basis matrix Y, where
YTY = Ik and Ik is an identity matrix of the size k × k.
In this paper, we employ commonly used projection distance
to match two points Y1, Y2 on Grassmann manifold, i.e.,

dp(Y1,Y2) =
∥∥Y1Y

T
1 −Y2Y

T
2

∥∥
F
, (8)

where Y1Y1
T and Y2Y2

T are projection matrices and
above projection distance approaches the geodesic distance
at a scale of

√
2 [Huang et al., 2015a].

Suppose there is a set of images or features
{X1,X2, ...,Xn}, where Xi ∈ Rd×mi , d is the size of
sample and mi is the number of samples in the ith tar-
get, i = 1, 2, .., n. Firstly, we represent data Xi using a
k-dimensional linear space, which is spanned by the corre-
sponding orthonormal basis matrix, i.e., XiX

T
i ' YiΛiY

T
i ,

where Yi is the matrix composed of the top k largest
eigenvectors of Xi. Then the distance between Xi and Xj

can be converted to the distance between YiY
T
i and YjY

T
j .

Similar to the distance metrics on SPD manifold, we first
define a mapping f : Gr (k, d) → Gr (k, r), and denote the
transformation matrix of f as M. Notably, M is a d × r

matrix of full column rank. We use MTYi
′

to represent the
orthonormal components of MTYi, which is the orthonor-
mal basis matrix of the new Grassmann manifold Gr (k, r).

Then the learned projection metric on the low-dimensional
Grassmann manifold is defined as

d2p

(
MTYi

′
Yi

′TM,MTYj

′
Yj

′TM
)

= 2−1/2
∥∥∥MTYi

′
Yi

′TM−MTYj

′
Yj

′TM
∥∥∥2
F

= 2−1/2tr
(
QTijT

T
ijQ
)
,

(9)

where Q = MMT is a d× d rank-r SPSD matrix and Tij =

Yi

′
Yi

′T −Yj

′
Yj

′T . Let A = QQ, then we can rewrite the
projection distance (9) as:

dp (Tij) = tr (ATijTij) , (10)

where A is a parameter to be learned.
Notably, we find that parametric metric on Grassmann

manifold (10) shares the similar form with one on SPD man-
ifold (7), which encourages us to develop a metric learning
method to handle both manifolds.

4 Riemannian Manifold Metric Learning
In this section, we propose a generalized metric learning
method. The corresponding model and optimization are de-
scribed as follows.

4.1 Model
Inspired by the geometric mean metric learning (GMML) in
Euclidean space [Zadeh et al., 2016], we present a novel met-
ric learning method to learn the distance metrics for both SPD
manifold and Grassmann manifold. Given a set of training
data {X1, ...Xi, ...,Xn}, Xi ∈ Rd×mi where d and mi are
feature dimension and the number of samples in the ith target,
respectively. In real-world applications, Xi can be an image
set in video based face recognition, or a set of local features
extracted from images. The goal of our method is to learn
an appropriate parameter A in metrics (7) and (10) to further
improve performance of model matching.

According to training data {X1, ...Xi, ...,Xn} with la-
bel information, we can compute a set of SPD matrices
{S1, ...Si, ...,Sn} with Si ∈ Rd×d or a set of linear sub-
spaces {Y1, ...Yi, ...,Yn} with Yi ∈ Rk×d on SPD mani-
fold or Grassmann manifold. By using available label infor-
mation, we can generate a set of positive pairs (two points
with the same label) and negative pairs (two points with dif-
ferent labels). The principle of metric learning is usually to
learn parameter (i.e., A in our case) to pull the distances be-
tween positive (similar) pairs ((hi, hj) ∈ P) to be as small
as possible, while the distances between negative (dissimilar)
pairs ((hi, hj) ∈ N ) are pushed as large as possible.

As suggested in [Zadeh et al., 2016], instead of decreasing
the sum of distances over all similar pairs while increasing
ones over all dissimilar pairs in previous methods, we learn
A with minimizing the geodesic distance of similar pairs and
the interpoint geodesic distance (described by A−1) of dis-
similar ones on nonlinear manifolds. Then our metric learn-
ing method can be formulated as:

min
A�0

∑
(hi,hj)∈P

dA(hi, hj) +
∑

(hi,hj)∈N

dA−1(hi, hj), (11)
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where hi and hj represent two points on SPD manifold or
Grassmann manifold. As shown in [Zadeh et al., 2016],
both of distances dA and dA−1 are monotonous but their
tendencies of change are completely opposite. That is,∑
(hi,hj)∈P

dA(hi, hj) is minimized to pull the points in pos-

itive pairs closer while
∑

(hi,hj)∈N
dA−1(hi, hj) is minimized

to enlarge the distances between two points in negative pairs.
According to the distance metrics in (7) and (10), our met-

ric learning problem are described as follows. For SPD man-
ifold, the objective function is formulated as:

min
A�0


∑

(hi,hj)∈P
tr (A (Ti −Tj) (Ti −Tj))+∑

(hi,hj)∈N
tr
(
A−1 (Ti −Tj) (Ti −Tj)

)
 ,

(12)
where Ti = log(Si) or S

1
2 , and Si is an SPD matrix. Let

P and N denote similar matrix and dissimilar matrix on the
manifold, respectively. Thus, we have

P =
∑

(hi,hj)∈P
(Ti −Tj) (Ti −Tj).

N =
∑

(hi,hj)∈N
(Ti −Tj) (Ti −Tj).

(13)

For Grassmann manifold, the objective function is formu-
lated as:

min
A�0

 ∑
(hi,hj)∈P

tr (ATijTij) +
∑

(hi,hj)∈N

tr
(
A−1TijTij

) ,

(14)
where Tij = Yi

′
Yi

′T −Yj

′
Yj

′T . Then, we have
P =

∑
(hi,hj)∈P

TijTij .

N =
∑

(hi,hj)∈N
TijTij .

(15)

We can see that our metric learning on both SPD (12) and
Grassmann (15) manifolds can be reformulated in terms of
A, P and N as following:

f (A) = min
A�0

tr (AP) + tr
(
A−1N

)
. (16)

Meanwhile, we show P and N are positive semi-definite for
both SPD manifold and Grassmann manifold, which is given
in the following lemma:
Lemma 1 For SPD manifold and Grassmann manifold, P
and N in (13) and (15) are symmetric positive semi-definite
(SPSD).
Proof 1 For two points Si,Sj on SPD manifold, the matrices
Ti,Tj are SPD matrices as well. Ti−Tj is also a symmetric
matrix. Since the square of an arbitrary symmetric real ma-
trix is a SPSD matrix, (Ti −Tj) (Ti −Tj) is easily proved
to be a SPSD matrix. Hence, P and N are symmetric positive
semi-definite.

For Grassmann manifold, as Yi

′
Yi

′T is symmetric, Tij is
also symmetric. Thus, it is easily proved that for Grassmann
manifold P and N are symmetric positive semi-definite.
The property of positive semi-definite lying in P and N plays
a key role in optimizing our RMML (16), which will be in-
troduced as follows.

Algorithm 1 RMML-SPD and RMML-GM Algorithms

Input:
Training data {Xi,X2, ...,Xn} ,Xi ∈ mi×d.

1: RMML-SPD: Compute SPD matrices Si from Xi, i =
1, 2, ..., n. Compute Ti, and P and N by using (13).
RMML-GM: Compute Yi for all train data Xi and P and
N by using (15).

2: Compute A by using (21).
Output:

Distance Metric matrix A

4.2 Optimization and Algorithm
Since objective function (16) is strictly convex and geodesi-
cally convex [Zadeh et al., 2016], we can seek the globally
optimal solution of A if it satisfies∇f (A) = 0. So, by com-
puting the gradient of f with respect to A and setting it to
zero, we have

P = A−1NA−1 ⇒ APA = N. (17)
It is easy to know that (17) is a Riccati equation and its global-
ly optimal solution is the midpoint of geodesic curve joining
matrices P−1 and N on SPD manifold. So, the solution of
A can be easily achieved by computing the Riemannian geo-
metric mean between SPD matrices P−1 and N, i.e,

A = P−1#1/2N = P−1/2
(
P1/2NP1/2

)1/2
P−1/2. (18)

Obviously, since A is Riemannian geometric mean between
SPD matrices P−1 and N, it is naturally symmetric positive
definite.

However, it is well known that computation of geometric
mean (18) involves expensive Riemannian operations. In this
paper, we optimize A as geometric mean between SPD ma-
trices P−1 and N under efficient LERM framework. Thus,
we have

A = exp
(
−log(P) + log(N)

2

)
. (19)

Compared with solution (18), our optimization (19) is more
efficient. Note that solution (19) needs P−1 and N are sym-
metric positive definite. The Lemma 1 proves P−1 and N are
naturally symmetric positive semi-definite, then we introduce
a regularizer with parameter λ ≥ 0 to ensure P and N be
positive definite. In this way, the solution has

AR = exp
(
−log(P + λI) + log(N + λI)

2

)
. (20)

Besides, a weight parameter t (0 ≤ t ≤ 1 ) is introduced
to balance the effect of the distances between positive pairs
and those between negative pairs. Thus, the final solution of
matrix A is obtained as

Afinal = exp
(
−tlog(P + λI) + (1− t)log(N + λI)

2

)
.

(21)
The proposed metric learning method on SPD manifold
(RMML-SPD) and Grassmann manifold (RMML-GM) is
summarized in Algorithm 1.

For each sample in probe sets, we compute the distance be-
tween it and each training sample with the matrix A comput-
ed in Algorithm 1, then we use simple NN for classification.
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4.3 Discussions
Compared with pervious manifold metric learning method-
s (e.g., LEML [Huang et al., 2015b] and PML [Huang
et al., 2015a]) relying on computationally expensive itera-
tions, our RMML can be efficiently optimized with a global
closed-form solution. Moreover, the learned parameter in our
method is naturally positive definite without additional regu-
larization. Our RMML is inspired by GMML [Zadeh et al.,
2016], however, the proposed RMML aims at learning met-
rics on non-linear manifolds rather than in linear Euclidean
space. Furthermore, instead of optimization based on Rie-
mannian operation in [Zadeh et al., 2016], our RMML is op-
timized under more efficient LERM framework.

5 Experiments
In this section, we evaluate the proposed method on three
tasks, including object recognition, video based face recog-
nition and material classification.

Datasets. We conduct experiments on five datasets, in-
cluding ETH-80 [Leibe and Schiele, 2003], Flickr Material
dataset [Sharan et al., 2009], and UIUC material [Liao et al.,
2013], YouTube Celebrities [Kim et al., 2008], and YouTube
Face dataset [Wolf et al., 2011].

ETH-80 dataset contains 80 image sets of 8 object cate-
gories [Leibe and Schiele, 2003]. There are 10 sub-objects
for each category, and each sub-object has 41 images from d-
ifferent views. Following the experimental settings in [Wang
et al., 2012], we randomly choose 5 objects as gallery and the
other 5 objects as probes in each category. The size of each
image is resized to 20×20, and the intensity feature is used.

Flickr material dataset (FMD) contains 1000 images of 10
materials categories in the wild [Sharan et al., 2009]. We pass
each image through VGG-VD16 model pre-trained on Ima-
geNet dataset, and employ the outputs of the last convolution
layer as local features with size of mi × 512. Following the
common setting in [Wang et al., 2016], we randomly choose
half of images in each category as gallery and the other half
as probes.

UIUC material dataset has 216 images and 18 categories
of material in the wild [Liao et al., 2013]. The feature ex-
traction strategy is used as the same as that in Flickr material
dataset. We randomly choose half of images in each category
for gallery and the other half for probes.

YouTube Celebrities (YTC) dataset has 1910 video clips
of 47 subjects [Kim et al., 2008], and the number of frames
in each video varies significantly. Following the common set-
ting in [Wang et al., 2012; Huang et al., 2015b], we randomly
select 3 image sets per subject for gallery and 6 image sets for
probes. Histogram equalization is used to eliminate lighting
effects as a preprocessing step. Then, each image is resized
to a 20× 20 image and intensity is used to represent images.

YouTube Face (YTF) dataset contains 3425 videos of 1595
peoples [Wolf et al., 2011]. Each video has many sequences
with variations of poses, illuminations and expressions. Fol-
lowing [Huang et al., 2015b], we intercept the face part of
every frame and resized it into 20 × 40 pixels. 5000 video
pairs are used to perform ten-fold cross validation tests. In

each fold there are 500 pairs, including 250 pairs of the same
person and 250 pairs of different persons.

Evaluation methods. To evaluate the effectiveness and
efficiency of our proposed method, we compare RMM-
L with various state-of-the-art counterparts including non-
linear manifold learning methods and metric learning meth-
ods on manifolds. They are summarized as follows.

• Nonlinear manifold based methods: Manifold-Manifold
Distance (MMD) [Wang et al., 2008]; Manifold Dis-
criminant Analysis (MDA) [Wang and Chen, 2009].
• Affine subspace based methods: Affine and Convex Hul-

l based Image Set Distance (AHISD and CHISD) [Ce-
vikalp and Triggs, 2010].
• SPD manifold based methods: SPD Manifold Learning

(SPDML) [Harandi et al., 2014a]; Log-Euclidean Metric
Learning (LEML) [Huang et al., 2015b].
• Grassmann manifold based methods: Grassmann Graph

embedding Discriminant Analysis (GGDA) [Harandi et
al., 2011]. Projection Metric Learning (PML) [Huang et
al., 2015a];

Parameters setting. For metric learning on SPD manifold,
we first compute mean vector µ and sample covariance S of a
set of data to obtain a Gaussian descriptor. Meanwhile as sug-
gested in [Wang et al., 2016], we estimate covariance matrix
Σ̂ with vN-MLE method. As the space of Gaussian distribu-
tion forms a Riemannian manifold, we embed them into the

space of SPD matrices by

[
Σ̂ + β2µµT βµ

βµT 1

]
, where β > 0

is a positive parameter to balance the dimension and orders of
magnitude between mean vector and covariance.

For LEML method, since the distance metrics are learned
in the tangent space, we compute Ti = log (Si) for all SPD
matrices. As suggested in [Huang et al., 2015b], we add a
positive real number (i.e.,0.001× tr(Si)) to the diagonal ele-
ments of Si for numerical stability, and exploit Gaussian em-
bedding followed by matrix logarithm. Following the existing
metric learning algorithms on Grassmann manifold [Harandi
et al., 2011; Huang et al., 2015a], the number of orthonormal
bases for each linear subspace is set as 10.

For fair comparison, we exploit the source codes of com-
petitive methods provided by the authors, and set the parame-
ters suggested by the original papers. For MMD, the variance
percentage to preserve in PCA is set to 90%. For MDA, we
set three parameters as same as [Wang and Chen, 2009]. For
linear and non-linear versions of AHISD and CHISD [Ce-
vikalp and Triggs, 2010], the 98% energy by PCA is retained
in non-linear AHISD and the value of error penalty C in
CHISD is set as same as [Cevikalp and Triggs, 2010]. The
reduced feature dimension is set to (c− 1) for LDA, where c
is the number of classes. For LEML, η is tuned from 0.001 to
1000 and the value of ζ is tuned from 0.1 to 1. For GGDA,
the graph parameter v is set from 1 to 10 and the size of pro-
jection matrix r is set to (c − 1). Besides, its parameter β is
tuned from 1e2 to 1e6. There are two parameters λ and t for
RMML. We simply set λ to 0.1 on all datasets, and set t from
{0.2, 0.4, 0.6, 0.8} by cross-validation on the training set.
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Accuracy. The performances of all competitive methods are
evaluated in terms of both accuracy and efficiency. Table ??
shows accuracies of different methods on five datasets. Ten
random trials are run on ETH-80, FMD, UIUC material and
YTC datasets, then the average results are reported. For YTF,
the standard ten-fold cross validation are used for evaluation.
As GGDA cannot be applied to verification task, the result
of GGDA on YTF dataset is not reported. From Table ??
one can see that our RMML-SPD and RMML-GM get better
performance than their counterparts in both classification and
verification tasks. Compared with metric learning methods on
SPD manifold, our RMML-SPD significantly improves the
second best LEML over 1.50%, 2.28%, 7.13%, 8.20%, 2.36%
on five datasets, respectively. Compared with metric learning
methods on Grassmann manifold, the proposed RMML-GM
achieves the best results on four datasets except UIUC. The
promising performance of our RMML maybe owe to effective
objective function and global closed-form solution.

Methods ETH-80 FMD UIUC YTC YTF
MMD 85.75 60.60 62.78 69.60 65.60
MDA 87.75 63.50 67.13 64.72 66.28

AHISD(linear) 72.50 46.72 55.37 64.65 66.50
AHISD(non-linear) 72.00 46.72 55.37 66.58 67.40

CHISD(linear) 79.75 47.52 65.09 67.24 66.24
CHISD(non-linear) 72.50 63.90 65.65 68.09 67.60

SPDML-AIRM 90.75 63.42 62.00 67.50 62.16
SPDML-Stein 90.75 63.80 61.12 68.10 62.56

LEML 93.50 66.60 62.96 69.85 68.80
RMML-SPD 95.00 68.88 70.09 78.05 71.16

GGDA 87.75 68.26 74.26 65.99 N/A
PML 90.25 68.88 76.94 68.79 69.44

RMML-GM 93.00 69.62 76.48 69.15 70.20

Table 1: Accuracies of different methods on five datasets

Methods ETH-80 FMD UIUC YTC YTF
MDA 0.31 13.21 7.25 11.30 1859.64
LEML 9.57 710.01 182.97 28.10 2340.3

RMML-SPD 0.06 0.11 0.11 0.06 0.48
GGDA 1.43 108.83 6.02 3.42 N/A
PML 3.56 2988.3 93.69 26.20 14.54

RMML-GM 0.06 0.06 0.10 0.06 0.47

Table 2: Comparison of training time (s) on five datasets

Running time. Then we compare the running time of dif-
ferent methods. The experiments are run on a PC equipped
with a single Intel(R) Core(TM) i7-6700 (3.40GHz). For our
RMML-SPD and RMML-GM, both SPD matrices and linear
subspaces can be computed offline, leading the computation
of P and N in (13) and (15) can be regarded as a preprocess-
ing step. Therefore, we report the time of solving (21) as the
training time of RMML. For LEML, the computation of SPD
matrices and logarithmic operation is considered as a prepro-
cessing step and the time for the cyclic Bregman projection
algorithm is recorded as the training time. For PML, we com-
pute the linear subspaces before training and report the time

of projection metric learning. As for GGDA, the Gram matrix
is first computed as a preprocessing step. The time for com-
puting within-class and between-class graph similarity matri-
ces and eigen decomposition is recorded.

The training time of various methods on five datasets is
listed in Table 2. From it we can see that RMML-SPD and
RMML-GM are much faster than LEML and PML, respec-
tively. It owes to RMML has a closed-form solution while
LEML and PML both need several iterations for optimiza-
tion. Compared with GGDA, RMML is more scalable to
large scale problems. Besides, RMML is also suitable for
online learning because P and N in (13) and (15) can be eas-
ily updated by adding the distance information of new pairs.
Then distance metrics are learned efficiently with a closed-
form solution. On the contrary, metric learning methods rely-
ing on iterative optimization will be time consuming.

6 Conclusions and Future Work
In this paper, we proposed a novel Riemannian manifold met-
ric learning (RMML) towards handling two most widely used
manifolds (i.e., SPD manifold and Grassmann manifold) in
the same formulation. To this end, we first introduce para-
metric metrics on SPD and Grassmann manifolds, and for-
mulate metric learning problem as minimizing the geodesic
distance of similar pairs and the interpoint geodesic distance
of dissimilar ones on manifolds. The proposed RMML has
a global optimum and is efficiently optimized with a closed-
form solution under LERM framework. Experiments on var-
ious computer vision tasks demonstrate the effectiveness and
efficiency of the proposed RMML. In future, we will adopt
RMML to more possible types of Riemannian manifolds and
apply our method to more other tasks.
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