
Liu XL, Wang HZ, Li JZ et al. EntityManager: Managing dirty data based on entity resolution. JOURNAL OF COM-

PUTER SCIENCE AND TECHNOLOGY 32(3): 644–662 May 2017. DOI 10.1007/s11390-017-1731-1

EntityManager: Managing Dirty Data Based on Entity Resolution

Xue-Li Liu, Hong-Zhi Wang ∗, Member, CCF, Jian-Zhong Li, Fellow, CCF, and Hong Gao, Senior Member, CCF

Massive Data Computing Laboratory, Harbin Institute of Technology, Harbin 150001, China

E-mail: xueli.hit@gmail.com, {wangzh, lijzh, honggao}@hit.edu.cn

Received February 29, 2016; revised January 10, 2017.

Abstract Data quality is important in many data-driven applications, such as decision making, data analysis, and data

mining. Recent studies focus on data cleaning techniques by deleting or repairing the dirty data, which may cause information

loss and bring new inconsistencies. To avoid these problems, we propose EntityManager, a general system to manage dirty

data without data cleaning. This system takes real-world entity as the basic storage unit and retrieves query results according

to the quality requirement of users. The system is able to handle all kinds of inconsistencies recognized by entity resolution.

We elaborate the EntityManager system, covering its architecture, data model, and query processing techniques. To process

queries efficiently, our system adopts novel indices, similarity operator and query optimization techniques. Finally, we verify

the efficiency and effectiveness of this system and present future research challenges.
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1 Introduction

Dirty data exists in many systems. It can be caused

by information integration, error input, incompleteness,

and imprecision. Due to the frequent appearance of

dirty data, many research efforts have been devoted to

analyzing and processing the dirty data[1-3].

In dirty data management, a fundamental problem

is to handle data with conflicts[4-6]. Here a conflict

datum refers to different representations of the same

real-world object, which is viewed as the intrinsic part

of dirty data. For example, different names in different

data resources may refer to the same person. Man-

aging and querying conflict data is important in dirty

data analysis, and it is also a cornerstone of many real-

world applications, such as entity resolution[7], truth

discovery[8], and data recovery[9].

Due to its importance, many efforts have been made

on conflict data management[4-6]. The majority of these

studies are based on data cleaning, which is designed

for the conflict data to smooth the inconsistency. After

data cleaning, the inconsistencies are eliminated and a

single and unified representation of each real-world ob-

ject is created. Then existing algorithms can be directly

applied to the cleaned data to generate results for any

user-specified queries. However, these data cleaning

methods only produce a representative value of the con-

flict data, but not preserve the heterogeneous informa-

tion within the conflict data, which may be more useful

in some applications. For example, in trade analysis[10],

outdated information is valuable in predicting future

data. Thus, it is more desirable to design a system

which cannot only losslessly maintain the information

within the conflict data but also support general queries

efficiently.

In this paper, we design a new system called Enti-

tyManager. We regard the entity as the building block

in our system, while the tuple is regarded as the basic

data unit in previous studies. Here each entity in the

data corresponds to a unique object in the application

in the real world. In our system, we organize all the en-

tity tuples as different entities, each of which contains
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a number of conflict representations. Then, the queries

are performed on an entity-wise manner, that is, by

comparing the constraint of the queries on each entity.

We can benefit a lot from utilizing the entity as the ba-

sic data unit in organizing data. On one hand, conflicts

among data are preserved and resolved within each en-

tity. On the other hand, queries performed on entities

can tolerate much more errors on the constraint of the

queries, i.e., the query with inaccurate constraints is

more likely to obtain accurate results within a whole

entity, but not within each individual tuple.

The conflicts in the same attribute of a tuple could

be regarded as uncertain, but not mutually exclusive,

i.e., each descriptive form of a conflict uncertain datum

is meaningful in the real world. Each of the conflict

values can represent a possible entity attribute value.

Thus, we describe multiple values as uncertain values.

Even though many studies using probabilistic model

have been proposed to represent uncertain data, such

models cannot solve the uncertainty problem caused

by conflicts. Indeed, the conflict uncertain data can-

not be represented by the possible world model, which

is not designed to manage the uncertainty led by con-

flicts from entity resolution. The possible world model

is based on the concept of “possible world”[1], which is

not suitable to define data with conflicts.

Instead of using “possible world”, we develop the

EntityManager system by using the entity as the basic

unit and using conflict attribute values as an uncertain

attribute value. In our system, the entity resolution

technique is performed on the datasets and the tuples

corresponding to the same real-world entity are merged

as an uncertain entity tuple. For example, Table 1 con-

tains the information of three individuals. By using the

entity resolution technique, the relation is represented

as Table 2, which means the three individuals are reco-

gnized as the same person. Since the attributes name,

city, and pno have conflicts in their values, such at-

tribute contains an uncertain value with two possible

values and their probabilities.

Due to the uncertainty in the attributes and possi-

ble errors in query constraint, the queries in our sys-

tem have different semantics from the queries in tra-

ditional databases. EntityMangager modifies common

SQL statements as its query statements, and it returns

results with probability value representing the extent

to what degree this entity matches the query. With

such possibilities, users could judge whether the results

should be accepted.

Due to the uncertainty in the attributes, the query

processing techniques and query optimization tech-

niques in EntityManager are different from those in tra-

ditional methods. On one hand, by incorporating the

uncertainty of each attribute, the indices in our system

can group similar values together. On the other hand,

the similarity query processing techniques incorporate

the quality of the attributes values and take each entity

as a processing unit. Consequently, the query results

are organized according to referred entities. Also, our

system adopts query optimization techniques based on

the novel estimation methods, which estimate the se-

lectivity on multi-value attributes with uncertainty at-

tached to each value.

The contributions of this paper include three parts.

Firstly, we propose a novel data model: the entity

model to organize tuples. This model introduces uncer-

tainty as the representation of different descriptions of

one entity attribute. Secondly, we provide an overview

of query processing techniques and query optimization

techniques especially for the proposed entity model. Fi-

nally, we test the efficiency of query processing and op-

timization techniques in our system. We also test the

Table 1. Original Relation

ID NAME CITY ZIPCODE PNO (Phone Number) SALARY

1 John Smith Beijing 100010 010-80325789 4k

2 John Smith BJ 100010 010-80103389 5k

3 John Smith Beijing 100010 010-80325789 6k

Table 2. Entity Relation: PERSON

EID NAME CITY ZIPCODE PNO SALARY

1 (John Smith, 0.67) (Beijing, 0.67) (100010, 1.0) (010-80325789, 0.67) (4k, 0.33)

(J. Smith, 0.33) (BJ, 0.33) (010-80103389, 0.33) (5k, 0.33)

(6k, 0.33)

Note: EID: Entity ID.
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effectiveness of our system using case study and usabil-

ity study.

The remaining parts of this paper are organized as

follows. Section 2 introduces related work. Section 3

describes the structure of the EntityManager system.

Section 4 provides the data model in our system. Sec-

tion 5 discusses the query processing techniques. In

Section 6, the system performance is verified by experi-

ments. Further challenges and work are discussed in

Section 7. Finally, Section 8 concludes this paper.

2 Related Work

We divide the related work into three categories:

dirty data management, similarity-based query ope-

rators, and query estimation technique.

2.1 Dirty Data Management

Existing studies on processing dirty data fall into

three categories. The first category is data cleaning[11],

which is to detect and remove errors to improve data

quality. However, data cleaning cannot clean the dirty

data thoroughly and excessive data cleaning may lead

to the loss of information. Besides, existing data clean-

ing techniques are generally time-consuming. Espe-

cially when massive data updates frequently, the fre-

quent data cleaning operation will greatly reduce the

efficiency. To avoid data loss, the algorithms in the

second category perform queries directly on dirty data

and obtain query results with a clean degree[1-3]. While

these methods are suitable for special cases, they can-

not handle general cases. Third category includes seve-

ral general models of dirty data management without

data cleaning[4-6]. Most of these models only consider

the uncertainty in the attribute value, while the qua-

lity degree of each value of uncertain attributes and the

relationship of the attributes are ignored.

In this paper, we focus on entity-based relational

database model in which one entity tuple refers to an

object in the real world. This model reflects real-world

objects and preserves the relationship of real attribute

values.

2.2 Similarity-Based Query Operators

Similarity Search. A natural way for string simila-

rity search is to build an appropriate index structure for

strings. Currently, the most popular index structure for

similarity string matching is the inverted table, which

splits strings into grams and measures strings by edit

distance metric[12-18]. Even though gram-basedmethod

can process similarity string matching efficiently in

many cases, it has some weaknesses. Firstly, it can-

not deal with data update effectively. Secondly, the in-

verted tables may introduce many collection operations,

which increase the complexity of the query.

There are still a lot of non-inverted list index struc-

tures supporting the similarity string search. For ex-

ample, Zhang et al.[19] proposed an edit distance tree

structure which hashes each string into a number and

inserts it into a B+ tree structure. This method can

support data update well, but it imposes too much on

the ordering of the string and cannot pay full attention

to the similarity of strings. Therefore, a large number

of similar strings cannot be allocated in the same leaf

node, which results in defective filtering.

In our system, entity similarity search is closely re-

lated to the similarity search. Similarity search is to

find a string set in which each string is similar to the

query string, and entity similarity search is to return the

entities in which their attribute is similar to the query

string. Although entity similarity search and similarity

search have the same query form, their query seman-

tics have some differences. The entity similarity search

needs to consider the quality of each attribute value. It

means that even if there is one string in the attribute

similar to the query string, we cannot ensure that the

entity is in the result set since we must consider the

influence of the quality of each attribute value. Exist-

ing similarity technology can be applied to our system,

but the efficiency would be poor. Therefore, our system

adopts a new technique for entity similarity search.

Similarity Join. Similarity join is an essential ope-

ration in many applications such as data integration,

data cleaning and fraud detection. There has been

a lot of work on similarity join in the academic and

the industrial community. In the academic commu-

nity, existing studies usually employ a filter-and-refine

framework such as Part-Enum[12], All-Pairs-ED[20], Ed-

join[17], PPjoin[18] and so on. In the filter process, they

generate a signature set for each string, build an in-

verted index for each signature, and then compare the

signatures to filter the unsimilar string pairs. The most

common signature is q-gram. In the refining step, they

compute the similarity value of string pairs in the can-

didate set produced in the filter process and then return

the final results. However, they are inefficient when the

string length is not larger than 30[21]. Also, the in-

dex and candidates to be verified may be oversize. To

address this problem, Wang et al.[21] proposed a trie-
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based method. This method builds a prefix index for

string sets based on the idea that strings often share the

common prefix. This method uses string pairwise join,

while our EntityManager uses fuzzy set similarity join.

Therefore their method is not suitable for our system.

Current studies of the similarity join based on

set usually use Jaccard distance as similarity measure

function[12,22-23] and adopt the filter-and-verify frame-

work. The framework takes items in the set as signa-

tures, and then uses filtering measures to generate can-

didate sets. It is not suitable for our system because

it assumes the exact match between the two sets while

our system uses the fuzzy match.

To improve the efficiency of similarity join ope-

rator, the method in [24] changes the fixed size gram

to changed length gram, and the method in [25] opti-

mizes the fixed prefix length and chooses the best prefix

length for each string.

Different from the existing similarity join, the entity

similarity join is the fuzzy match between two weighted

string sets. It is more complicated than the similarity

join for a string pair and a string set pair.

2.3 Query Estimation Technique

Estimation of the size of the results of a query ope-

rator is crucial in the query optimization process. There

has been a lot of work on query estimation for tradi-

tional relational database management systems. Most

approaches are based on histogram[26], which records

the distribution of data. Here, a histogram on an at-

tribute A can be constructed by partitioning the data

distribution of A into buckets and approximating the

frequencies of values in each bucket in some common

fashion.

Another method is based on sampling. The sam-

pling methods avoid scanning all of the data. These

methods sample partial tuples from the database, and

then estimate query size based on the result obtained

from samples. The classic sampling methods include

simple random sampling[27-29], systematic sampling[30],

and LSH (locality-sensitive hashing) sampling[31]. In

the simple random sampling, each tuple is selected

with equal probability. Systematic sampling divides

the dataset into K intervals, and then takes a fixed

number of samples from each interval. It requires that

the dataset has been ordered already. Lee et al.[31] pro-

posed LSH sampling, which is the first sampling method

to solve the estimation size of set similarity join. This

method first aggregates the similarity sets into some

clusters, and then samples from clusters to estimate

the result size. However, it cannot be applied directly

in the EntityManager system because the element in

the entity set has a quality degree.

3 System Overview

The goal of our system is to manage dirty data with-

out cleaning it and retrieve query results according to

the quality requirements. To achieve this goal, we study

various techniques of dirty data management, such as

data model, indexing, query optimization and query

processing.

In this section, we provide an overview of the Enti-

tyManager system. More details on both its data model

and query processing implementation techniques will be

discussed in Section 4 and Section 5, respectively.

3.1 Data Model and Query Model

To avoid cleaning dirty data, data storage and query

processing in EntityManager are based on entity data

model. The entity data model takes entity as the ba-

sic storage unit. It roots in entity resolution technique

and further gathers various descriptions referring to the

same real-world entity in the results of entity resolution

into one entity tuple. When a query comes, the system

returns the entities matching the query as the results.

The query is different from traditional queries, though

the form is similar to SQL. Considering that users need

to get query answers satisfying a quality requirement,

we introduce a similarity query model. This similarity

query model also has other advantages. For example, it

supports fuzzy query when the user cannot describe the

constraint exactly. Also, when the dirty data has errors

such as spelling mistakes, it can meet user requirements

when the query constraint is relaxed.

3.2 Query Processing

We developed the following three new techniques for

processing query efficiently on our entity database.

• Similarity-Based Operators. With the selec-

tion and the join operators different from the tradi-

tional relational database, an entity similarity search

algorithm[32] and an entity similarity join algorithm[33]

for the EntityManager system were developed.

• Indices. To process entity similarity search and

join efficiently, Fgram-Tree[32] and bi-layer prefix[33] in-

dices were designed for entity similarity search and en-

tity similarity join, respectively. The Fgram-Tree index
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handles similarity weight string search, and the bi-layer

prefix index handles both the string similarity and the

string set similarity.

• Query Optimization. For new operators in our

system, Zhang et al. designed novel result estimation

algorithms for the entity similarity search and join ope-

rators in [34]. Additionally, since the selectivity of join

operation on multiple relations is difficult to estimate,

we proposed a greedy algorithm for selectivity estima-

tion and a join order selection algorithm based on the

selectivity[35].

3.3 Architecture

The framework of query processing in the Entity-

Manager system is similar to that of traditional rela-

tional databases[36]. As depicted in Fig.1, the frame-

work includes a data indexing module, syntax parsing

module, query executor module and query optimiza-

tion module. However, the EntityManager system has

a different module: entity resolution module. The in-

put of this module is dirty data, and through the entity

resolution algorithm, this module organizes tuples into

entities. The entities are the units of query processing

in the EntityManager system.
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S
y
n
ta

x
 P

a
rs

in
g
 M

o
d
u
le

Q
u
e
ry

 P
a
ln

 M
o
d
u
le

Q
u
e
ry

 O
p
e
ra

ti
o
n
 M

o
d
u
le

D
a
ta

 I
n
d
e
x
in

g
 M

o
d
u
le

D
a
ta

b
a
se

 t
o
 S

to
re

 D
a
ta

U
se

r 
In

te
rf

a
c
e
 M

o
d
u
le

Entity Recognition Module

Fig.1. EntityManager architecture.

4 Data Model

In this section, we introduce the data model in our

system and the semantics of the queries. In the data

model of our system, the definitions of database and

relation are similar to those in traditional database[37],

while the definitions of attributes and tuples are diffe-

rent.

Since the data model is different from the tradi-

tional relational model, the query in our system has

different semantics compared with the traditional re-

lational database. On one hand, the comparison be-

tween attribute values should consider the uncertainty

of each value. On the other hand, the comparison be-

tween attributes and query constraints is an approxi-

mate comparison rather than the accurate comparison

in the traditional relational database. We use the fol-

lowing example to show these differences.

Example 1. To select the telephone number of per-

son “John Smith”, the selection constraint is name ≈

“John Smith”. From the entities in Table 2, the at-

tribute name of e1 has a probability of
2

3
to match

the attribute perfectly. Suppose that the threshold is

set to 0.3, we get the results set {(010-80325789, 0.67),

(010-80103389, 0.33)}.

4.1 Entity-Based Data Model

Based on above description, firstly we define the un-

certain attribute value in Definition 1. An uncertain

attribute value contains not only the possible values,

but also its corresponding possibility. Then we give the

definition of entity in Definition 2. The entity is the ba-

sic unit in the entity-based relational database system,

containing a set of uncertain attributes.

Definition 1 (Uncertain Attribute). An uncertain

attribute is a pair (attr, A), where attr is the name of

the attribute and A = {(v, p)|v is a possible value of the

attribute and p is the possibility of the value v} is the

set of possible values of attribute attr. A is called an

attribute value set.

Clearly, the sum of possibilities of all possible values

for an uncertain attribute value is 1.

Definition 2 (Entity). An entity is a pair E =

(K,A), where A is a set of uncertain attributes and K

is a set of keys that is to identify the entity uniformly

(e.g., entity-ID).

Since we introduce the possibility of the values of

uncertain attributes, we need to define a new concept

to judge whether a tuple satisfies a query, and we call

this concept “similarity”. We define the similarity for

numeric type attribute and string type attribute.

Definition 3 (Similarity for Numeric Type At-

tribute). For an uncertain attribute (a, V ) and an atom
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constraint C in form of a@v where @ is a predicate sym-

bol (e.g., >,<, · · · ) and v is a constraint, the similarity

between them is defined as follows:

sim(V@C) =
∑

(vi,pi)∈V

sim(vi@v)× pi,

where

sim(vi@v) =

{

1, if vi@v,

0, otherwise.

For a selection query with a constraint a < v, the

similarity between one tuple and a query can be calcu-

lated according to Definition 3. We use an example to

illustrate it.

Example 2. Let t be a tuple with value ((20, 0.1),

(25, 0.4), (27, 0.4), (36, 0.1)) in attribute a. For two

given queries, Q1: a < 22 and Q2: a < 28, the similarity

between this tuple and query Q1 is 1×0.1+0×0.4+0×

0.4+0×0.1 = 0.1, and the similarity between this tuple

and query Q2 is 1×0.1+1×0.4+1×0.4+0×0.1 = 0.9.

Definition 4 (Similarity for String Type At-

tribute). For uncertain attributes (a, V1) and (a, V2),

and the edit distance threshold τ , the similarity between

(a, V1) and (a, V2) is defined as follows:

sim(V@C) =
∑

(vi∈V1,vj∈V2)&d(vi,vj)6τ

sim(vi@vj)× pi,

where

sim(vi, vj) = 1−
d(vi, vj)

max{|vi|, |vj |}
.

Here d(vi, vj) is the edit distance of string vi and vj .

With these definitions, we define some query ope-

rators.

4.2 Queries

As discussed in Section 3, our query model is based

on similarity; hence the query language in our sys-

tem has different semantics with traditional query lan-

guages. To facilitate users to use this system, we mod-

ify traditional SQL query language to get our query

language: EQL (entity query language). In this sub-

section, we use examples to illustrate key features of

the EQL language. The example queries are to be per-

formed on the tuples in Table 2.

4.2.1 Basic Queries

Q1. Simple EQL query: find the phone numbers of

person named “John Smith” and the quality degree is

0.9.

select pno

from person

where paerson.name ≈ “John Smith”

satisfy threshold = 0.9

Note that EQL uses satisfy to denote the possi-

bility requirement of the results defined by users. Here

“≈” denotes the entity similarity search operator for

string type attributes, which will be defined in Subsec-

tion 4.3. It expresses that the search is a similarity

search.

Q2. Similarity grouping and function in EQL: unlike

group operator in SQL, the group in EQL is similarity

group. It means that the similar value will be taken as

one group to process. For example, if a user wants to

know which city has a higher average salary, we use the

sgroup by expression.

select paerson.city, salary

from paerson

sgroup by person.city

In our example, we note that the grouping adopts

similarity measures. It means that “Beijing” and “BJ”

will be included in one group because they indicate the

same city.

With uncertain entity attributes in our system, we

compute new functions, namely ssum, svag, smin,

smax to replace corresponding functions sum, vag,

min, and max in SQL. The differences between the new

functions and functions in SQL lie in that the new func-

tions return the result with its possibility. The count

function in EQL is the same with the count function

in SQL.

Q3. Similarity join in EQL: suppose we have an-

other table carowner whose schema is (name, car)

with name as the person name and car as the car that

the person owns. If a user wants to know the number of

cars registered in the same city, the query involves ag-

gregation and similarity join. Assume that the quality

degree is defined to be 0.9.

select carowner.car, count(∗)

from person, carowner

where paerson.name ≈ carowner.name

satisfy threshold = 0.9

sgroup by paerson.city

If the join is not the similarity equi-join and join

attribute is numeral form, we take the expected value

as the comparing item.
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4.2.2 Update Queries

Updating is a basic operation in the database sys-

tem. The updating in EQL has some differences from

the update, insert, delete operations in SQL. For the

update operator in EQL, the condition is “similarity”

rather than “equality”. The “similarity” is measured

by a similar function with a similarity threshold. In

our system, the similar function can be defined based

on edit distance, Jaccard distance or Hamming distance

for the string type. For the numeric type, we still use

exact match, but we also take into account the qua-

lity of the numeric attribute value. Here the similarity

threshold is assigned by the system. For example, sup-

pose there is an update query of “update the salary of

John Smith to 8k” for Table 2. In the executing pro-

cess, the EntityManger system first finds out the tuples

meeting name condition to obtain e1 tuple, and then

add 8k to salary attribute values in e1 (note that we

should recompute the possibility for each value). For

the insert operator, EntityManager supports inserting

new entity directly, which means in the insert clause,

the user must give all the uncertain values and their

corresponding quality degrees. For the delete clause,

we first find entities matching the delete condition with

the similarity search operation, and then delete the en-

tity tuple directly.

4.3 Operators of the Entity Data Model

In this subsection, we describe basic query operators

in the EntityManager system. The semantics of group,

project and update operator adopts similarity match-

ing. The definition of “similarity” is the same with

that of the similarity in the select operator. Therefore

this subsection focuses on the search and join operators

which are redefined with new semantics in terms of the

similarity between the query constraint and multi-value

attributes.

4.3.1 Selection Operator

As shown in example 1, the query results are orga-

nized in an entity table and each entity in the results

satisfies the query with a similarity value. Since a re-

sult with a low similarity is generally less interesting to

the user than value answers with higher similarities, we

consider those results with a similarity value less than

a threshold τ (this parameter can be a default value in

the system or provided by the user) as unsatisfied for a

query. Therefore, the results of queries should be those

answers that have a similarity exceeding the threshold

τ . Therefore a query for numeric type attribute with

constraint a <τ x can be processed by the operator

defined as follows:

sim(a < x) > τ ⇐⇒
∑

(vi,pi)∈V sim(vi < x) × pi >

τ .

In example 2, if the similarity threshold is fixed to

0.5, the tuple does not satisfy query Q1 but satisfies

query Q2.

For a query for string types, the attribute with con-

straint a ≈τ x can be processed by the operator defined

as follows:

sim(a ≈ x) > τ ⇐⇒
∑

(vi,pi)∈V sim(vi, x)× pi > τ .

4.3.2 Top-k Entity Similarity Join Operator

Similarity join between two sets of tuples returns

pairs of tuples satisfying that the similarity between

two tuples in each pair is above a given threshold[17].

Currently, many methods to measure the similarity are

proposed[18], such as edit distance, Hamming distance,

Jacquard similarity, cosine similarity for strings, and

the exact match for the numeric type. All of them

could be applied in our system. We use function sim

to compute the similarity value. Considering that query

results have a corresponding quality degree and users

want to get a high quality answer, we define the simila-

rity join operator from two aspects: one is top-k entity

similarity join, and the other is threshold-based entity

similarity join.

Top-k search has wide applications in many systems

such as the web, the multimedia search, and the tradi-

tional relation database[38]. Since all possible values

have a possibility in the entity database, the results of

similarity join will also have a probability representing

the quality of the result. To find the join results with a

high probability in the proper size, the top-k operator

is in demand in the EntityManager system, where the

answers ranked by the quality and users specify para-

meter k. We define the top-k entity similarity join as

follows.

Definition 5 (Top-k Entity Similarity Join). Given

two uncertain attribute value sets R, S, the nu-

meric value k and the edit similarity threshold τ ,

for each (r, s) ∈ R × S, the rank value rv(r, s) =
∑

sim(vri , vsj ) × pri × psj where pri is the possibility

of the i-th possible value in attribute value r, and the

top-k entity similarity join returns all attribute value

pairs D satisfying: 1) |D| 6 k, 2) for each (r, s) ∈ D,

(r
′

, s
′

) /∈ D, rv(r, s) > rv(r
′

, s
′

).

There are some practical applications that users are

only interested in results with a relatively high proba-
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bility and the results with lower possibilities will be ig-

nored. Hence we consider another similarity join whose

result reaches a probability threshold, which is defined

as follows.

Definition 6 (Threshold Entity Similarity Join).

Given entity tables R, T , entity join attribute S, possi-

bility threshold θ, and similarity threshold τ , the entity

similarity join operator on S of R and T returns the

pairs satisfying: {(r, s)|
∑

sim(vri , vsj )× pri × psj >

θ}, where pri is the possibility of the i-th possible value

in attribute value r. For convenience, sim(vri , vsj ) ×

pri × psj is called as quality affection of string pairs

vri , vsj to entity pair (r, s).

5 Query Processing Techniques of

EntityManager

In this section, we introduce the query processing

techniques in EntityManager. We first introduce the

query execution techniques in Subsection 5.1, and then

introduce the query optimization techniques in Subsec-

tion 5.2.

5.1 Query Execution in EntityManager

The major part of the query execution in Entity-

Manager is the implementation algorithms of the query

operators, which include the entity similarity search,

the entity similarity join, the update, and the group.

Section 4 has introduced the executing process for the

update operator. Since the group operator adopts the

similarity match for group condition, we adopt the self

threshold entity similarity join method to aggregate

similar uncertain attribute values into one group. There

are also some types of query especially for numeric type

attributes, such as the range query and the non-equal

entity similarity join. For these queries, the system

first computes the expectation value for each attribute

value, and then compares the expectation value with

the query constraint to obtain the results. Therefore,

we focus on the entity similarity search and the entity

similarity join in this subsection.

5.1.1 Similarity Search

Both numeric type and string type are important in

the real applications. For the numeric type attribute,

given a numeric threshold τ , firstly we need to compute

the similarity between the uncertain attribute value and

the search value. If the similarity is no less than τ ,

we add the numeric value into the result set. Here,

the threshold τ (ranging from 0 to 1) is specified by

the system or an expert. To improve query efficiency,

EntityManager builds B-tree index for frequently-used

attributes in queries.

For string type, given a query string t, and an en-

tity set S, string similarity search returns all entities

in S which are similar to t. The results of the entity

similarity search can be got through the results of simi-

larity search by verifying the probabilities of similar

strings. Therefore we focus on improving the efficiency

of the current similarity search techniques. Nowadays,

indexing is an efficient technique to implement simila-

rity string search. Existing index techniques often con-

struct a prefix tree to index each string or split a string

into a feature gram set, and then build an inverted table

for each q-gram appearing in the string sets. However,

both of them cannot effectively hash similar strings to

the same index items and the dissimilar items to diffe-

rent index items. This weakness makes current index

inefficient for similarity search.

Thus, Tong and Wang proposed a new string in-

dex, Fgram-Tree[32], which filters strings based on q-

gram feature. Fgram-Tree groups similar strings into

the same index node and locates dissimilar strings into

different nodes. Hence it supports data updating and

greatly improves the efficiency of the entity similarity

query. Fgram-Tree can also be applied to different

types of search such as top-k and threshold entity simi-

larity search.

We start with the definition of the structure of

Fgram-Tree.

Definition 7 (Fgram-Tree)[32]. An Fgram-Tree is a

tree structure, where each leaf node is represented as a

triple (bs, cbs, ids), and each intermediate node is rep-

resented as a tuple (bs, cbs). Here bs is a tuple set,

and each tuple consists of two elements: a q-gram in

strings of ids and its occurrence frequency; cbs is the

center of bs, storing the q-gram sets whose frequency is

no less than the threshold τ ; ids is the set of the strings

attached to the node.

Example 3 explains the specific structure of Fgram-

Tree.

Example 3. Assume that we have strings {(0, Joey),

(1, Joel), (2, Janson), (3, Janet), (4, Joe)} and the

threshold τ = 2. The general index structure is shown

in Fig.2. Similar strings s0, s1, s4 are stored in LN-

ode1, and strings s2 and s3 are stored in LNode2.

Based on the Fgram-Tree index, two filter condi-

tions used in the pruning process are proposed and are

necessary conditions for similar strings. The first filter-



652 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

ing condition concerns on the common gram (q-gram

is the gram with q characters) set of the query string

t and the bs of node c. If the cardinality of their com-

mon gram set is less than the threshold τ , any string

belonging to node c must not be similar to t. Here the

threshold can be obtained by existing count filtering

method[17]. The second filtering condition is about the

common grams of query string t and the cbs of node c.

If t belongs to the cluster node, it must have common

gram with cbs.

bs:(jo,3)(oe,3)(ja,2)(an,2)(el,1)(ey,1)
      (ns,1)(so,1)(on,1)(ne,1)(et,1)
cbs: jo, oe, ja, an

INode

LNode2
bs: (ja,2)(an,2)(el,1)(ns,1)(so,1)

      (on,1)(ne,1)(et,1)
cbs: ja, an
ids: 2, 3

cbs: jo, oe
bs: (jo,3)(oe,3)(el,1)(ey,1)

ids: 0, 1, 4

LNode1

Fig.2. Fgram-Tree structure.

For threshold-based search based on Fgram-Tree,

we use these two conditions to prune leaf nodes. Then,

each string s in the obtained leaf nodes needs to be

verified whether s satisfies the constraint.

For top-k search method, first we find the leaf nodes

satisfying constraint t by setting the threshold to 0, and

the k most similar strings attached in one leaf node are

chosen as the initial results. Then we visit other leaf

nodes and update the results as follows: assume that

string s in the initial results has the smallest simila-

rity with the query string, if the similarity value of the

query string with a string s in the leaf nodes is larger

than the similarity value of the query string with s, we

remove s and add t to the results. Thus we only need

to access the index once.

5.1.2 Entity Similarity Join

In this subsection, we discuss the threshold entity

similarity join and the top-k entity similarity join.

Threshold Entity Similarity Join. Given two entity

tables S and R, and the join attribute A on S and R, the

threshold entity similarity join returns all entity pairs

in R × S such that the similarity of each entity pair

is no less than a predefined similarity threshold. For

numerical attributes, we need to compute the expected

value for each uncertain attribute, and then compute

the absolute difference of the expected values of the en-

tity pair. If the absolute difference is no more than the

similarity threshold, we add the entity pair into the fi-

nal results. EntityManager uses a hash-based method

to process the numerical entity similarity join. Firstly,

we compute the expected value for each join attribute

value, and then we hash them into hash buckets. Fi-

nally we check the buckets to get the final results. Here

the hash function is constructed by a division-based

method. In hash step, all the similarity entity pairs fall

into the same buckets. Therefore in the final checking

step, we only need to check the buckets whose hash

values are in the threshold range.

For the string type attribute, existing similarity join

algorithms are inefficient to solve the threshold entity

similarity join due to redundant calculations. We pro-

posed the algorithm ES-JOIN[33], which adopts the tra-

ditional filter-and-verify framework but filters dissimi-

lar entity pairs with a new filtering method through

novel index: bilayer-prefix index.

Unlike existing string-based prefix indices taking q-

grams as index entries, the bilayer-prefix index has two

layers. The first layer takes q-gram as index entries.

The second layer takes entity ID eid as index entries

and stores a list with entries of the form (cid, Pro),

where cid is the string ID in the attribute value of the

entity denoted by eid and Pro is the probability of the

string cid. We use example 4 to illustrate the bilayer-

prefix index.

Example 4. Assume that we have two entities {1,

{(abc, 0.9), (abcd, 0.1)}} and {2, {(abce, 0.5), (bcd,

0.5)}}. The bilayer-prefix index structure is shown in

Fig.3.

To get similar entity pairs, firstly we merge the

bilayer-prefix indices of the two join tables to get the

candidate results by bilayer-prefix filtering. Then two

novel filtering methods are introduced to prune the can-

didates. According to Definition 6, the similarity of two

entity attribute values is the sum of quality affection of

string pairs in entity pairs. The quality affection in-

cludes two parts: the similarity of each string pair and

the product of Pro of each string pair. Note that the

similarity of a string pair is no larger than 1.

To save unnecessary computing, the (cid, Pro) list

of an entity is ordered by descending Pro. Let k be the

longest length of the (cid, Pro) list of an entity, and the

key idea of our first filtering method is that the compu-

tation of the similarity of string pairs in an entity pair

can be skipped if the product of Pro in the first string

pair is less than τ/k. In fact, according to the pigeon-
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The First Layer:

(Gram)

The Second Layer

(Entities that Grams 

Lie in)

Index Item 

(String Identifier with

Its Quality Degree)

bce

2

bcd

1 2

abc

1  2

(1, 0.5) (2, 0.1) (2, 0.5) (1, 0.9) (1, 0.5)

(2, 0.1)

Fig.3. Bilayer-prefix index structure.

hole principle, only if at least one of the similarity of

string pairs is no less than τ/k, the sum of the simila-

rity of all the k pairs will have a chance to be no less

than the threshold τ . It can be easily verified whether

the product of Pro of the first string pair is larger than

τ .

For candidate entity pairs which meet the first fil-

tering condition, we compute the sum of the products

of Pro in the string pairs of (cid, Pro) list until the

sum value is larger than τ . This is the second filtering

condition.

The filtering methods reduce the number of candi-

date pairs and save lots of computing cost. But even

if an entity pair meets both the above filtering condi-

tions, it may not be the final results. We should verify

the candidate pairs.

Top-k Entity Similarity Join. We modify the

threshold-based entity similarity join method to pro-

cess the top-k entity similarity join. Firstly, we set

the threshold to a small value to get the initial results.

Then we check the number of results: if the number

of the results is less than k, we loose the threshold to

get more results. After repeating this process until the

result number is no less than k or the threshold value

is 0, we rank the quality value of the results and return

the top-k values as the final results. In experiments,

we find that if an adequate threshold value is set, there

is no need to loose the threshold value in most cases,

which avoids recomputing the initial results. The algo-

rithm especially for the top-k entity similarity join will

be developed in the future work.

5.2 Query Optimization in Entity-Based

Databases

The query optimization in EntityManager includes

two steps. The first step is estimating the query re-

sult size. The second step is generating the query plan

based on the estimation results. For the entity simi-

larity search, the system uses an index to obtain the

results[32]. For the group operator, the result size es-

timation technique over the threshold entity similarity

join can be used for estimating the self-join size[39]. Ap-

parently, the update operator does not require size es-

timation. Therefore we focus on the estimation of the

result size over the range query and the entity simila-

rity join query. In this subsection, we discuss techniques

for the result size estimation of the range query (Sub-

section 5.2.1), the result size estimation of the thresh-

old entity similarity join (Subsection 5.2.2) and the or-

der selection of the entity similarity multi-join (Sub-

section 5.2.3). We adopt the strategy in traditional

relation databases[37] to generate the query plan.

5.2.1 Range Query Estimation

Existing query estimation methods are not suitable

for the range query in EntitManager, and they lead to

an overestimate since the uncertainty of the attribute

is not considered. To solve this problem, we propose

a histogram-based estimation technique. We start it

with an unbounded range query Q by a <τ x, where

a is an uncertain attribute value and τ is the simila-

rity threshold. This query returns all entity tuples sati-

sfying sim (a < x) > τ , which means that a satisfies the

following relationship:
∑

(vi,pi)∈a

sim (vi < x)× pi > τ .

If all possible values of an uncertain attribute are

stored in EntityManager, the calculation of the simi-

larity in Definition 3 is equivalent to calculating the

cumulative distribution function Fa(x), where Fa (x) =
∑

vi<x

pi. The query results are the values which satisfiy

Fa (x) > τ .

Histogram is often used to estimate the cumulative

distribution functions, and we use it to estimate the
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range query. Fig.4 shows an example of the cumula-

tive distribution functions (CDF) over several tuples

on attribute A. The tuples are shown in Table 3, where

A is the attribute name. In Fig.4, each stacked line

represents one tuple. The x-axis and the y-axis rep-

resent the attribute value and the similarity value, re-

spectively. Each stacked line can be regarded as the

cumulative distribution function of each uncertain at-

tribute value. Therefore, with such a figure containing

all tuples, given a query Q (a <τ x0), the total number

of tuples which satisfy query Q can be estimated by

the number of stacked lines crossing the line segment l

constrained by x = x0, τ < y 6 1.

0 20

R
e
la

ti
v
e
 E

rr
o

Tuple 1
Tuple 2
Tuple 3

40

Attribute Value

60 80 100

1.0

0.8

0.6

0.4

0.2

0.0

Fig.4. Example for the histogram structure.

Table 3. Data Fragment

ID A

1 ((10, 0.1), (35, 0.3), (65, 0.5), (80, 0.1))

2 ((20, 0.3), (50, 0.5), (80, 0.2))

3 ((15, 0.6), (60, 0.2), (70, 0.2))

We define a basic two-dimensional histogram. The

range input values are partitioned into n×m buckets,

where n andm are the lengths of the two dimensions re-

spectively. A histogram bucket H(i, j) covers the area

given by ((i × δx, j × δs), ((i + 1)× δx, (j + 1) × δs)),

where δx and δs are the horizontal width and the ver-

tical width of each histogram bucket. Each histogram

bucket records the number of tuples whose stacked lines

intersect with this bucket.

We find that the estimation errors using this his-

togram will not exceed the number of inflection points

of the stacked line in the buckets. In order to make the

estimation more accurate, we need to ensure that the

number of the inflection points in each bucket H(i, j)

is small enough. In our method, the histogram is firstly

partitioned into p equal-width buckets, and the num-

ber of the inflection points in each bucket should not

exceed ε (ε = M/p, where M is the total number of

inflection points, which equals the number of all pos-

sible attribute values). When a bucket contains more

than ε inflection points, this bucket is partitioned into

q equal-width buckets (generally, q ≪ p, and q can be

considered as a constant). Then we set each new bucket

containing ε/q inflection points. The bucket not meet-

ing the requisition is partitioned until the number of its

inflection points is less than ε.

Query Estimation Method. With the above his-

togram structure, we can easily estimate the result size

of the range query. Given a range query a <τ x0, the

result size is estimated as the number of the buckets

meeting the similarity threshold in x0.

General Range Query Estimation. For general range

queries, we add another dimension to the above his-

togram. The meanings of the original dimensions do

not change (the x-axis and the y-axis represent the

end point of the query and the similarity, respectively),

and the new additional dimension (z-axis) represents

the left constraint of the query. Given a general range

query Q(x1 < a < x2), we can estimate the result size

by counting the number of stacked lines crossing the

line segment l given by x = x2, τ < y 6 1 and z = x1.

That is equivalent to executing a query Q′ (a <τ x2)

on the plane, where z = x1.

We call such new histogram as the improved his-

togram. In this histogram, every plane on the z-axis

is a basic histogram, corresponding to the constraint

z 6 x < vmax. The width of a bucket on the z-axis is

controlled by an input parameter δz (in general, δz can

be equal to (vmax − vmin)/p).

5.2.2 Threshold Similarity Join Size Estimation

This subsection focuses on the result size estima-

tion of the threshold entity similarity join. The existing

methods for join result size estimation are mainly based

on sampling[30]. However, these methods can only be

applied to our system when the threshold value is rela-

tively small and the join result size is relatively large.

When it comes to a larger threshold and a relatively

small join result size, the estimation accuracy cannot be

guaranteed. This is because the samples satisfying join

condition take small proportion in sample space R×S.

To solve this problem, we use locality sensitive hashing

(LSH)[31] to cluster similar objects of R and S. As-

sume that the clusters on R and S are (CR1
, · · · , CRm

)

and (CS1
, · · · , CSn

), respectively. The result size of the

threshold entity similarity join can be obtained by mul-

tiplying the estimation of the result size of the thresh-
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old entity similarity join of CRi
(1 6 i 6 m) and CSj

(1 6 j 6 n). Note that if we take more samples from

the sample space CRi
× CSj

, the sample results would

reflect the actual result size more precisely.

Framework of Estimation Algorithm. The frame-

work of the threshold similarity join size estimation al-

gorithm is divided into two parts. The system first par-

titions the dataset into clusters based on the similarity

of attribute values, and then samples from the cluster

set to estimate the join result size.

Hash Cluster Based on Quality Degrees. The parti-

tion process has two steps. We first use LSH to hash

entity uncertain attribute values to get the similar re-

lationship of the uncertain attribute values, and then

apply a clustering algorithm based on the similar rela-

tionship.

Our system uses the edit distance as the similarity

measure function and takes q-gram as the signature of

strings in the threshold entity similarity join process.

The q-gram set of an uncertain attribute value is the

union of the q-gram set of all strings in the uncertain

attribute value. For example, the gram set of the uncer-

tain attribute value {(Robert, 0.6), (Bob, 0.4)} is { Ro,

ob, be, er, rt, Bo, ob}. Note that the gram set allows re-

peated elements. Based on count filtering[17], if the edit

distance of two strings s1, s2 is less than k, the common

q-gram number is at least max(|s1|, |s2|)+1−(k+1)×q

(hereafter, it is denoted as L(s1, s2)). From Defini-

tion 6, the threshold entity similarity join has the fol-

lowing features: the similarity value between string pair

(ri, sj) increases as the similarity value between entity

pair (r, s) increases.

Besides, by counting the q-gram set of each uncer-

tain attribute value, the attribute value could transfer

to a high-dimension vector. For each vector, each di-

mension corresponds to a unique q-gram, and the num-

ber of the dimensions is the q-gram number in the un-

certain attribute value set. This process in our system

is called as the vectorization of uncertain attribute val-

ues. We have the following properties.

Property 1. Suppose that (r, s) is an entity un-

certain attribute value pair, the more similar r and s

are, the more common q-grams the corresponding q-

gram set has, and the more similar the corresponding

high-dimension vector is, where the vector is the repre-

sentation of the q-gram set of (r, s).

Property 2. Suppose that the quality of entity

uncertain attribute value pair (r, s) is p, where p =
∑

ed(vri ,vsj )6k pri ×prj . Then the larger p is, the larger

pri and psj are. That is, the higher quality the en-

tity tuple (r, s) has, the higher quality the corresponding

common q-gram value has.

Based on Property 2, the process of the vectoriza-

tion of an uncertain attribute value can be improved by

adding the influence of quality degree. It makes the re-

sult vector more accurate to represent the correspond-

ing attribute value. In the vectorization process, we

do not count the frequency of each q-gram, but count

the quality value of each q-gram. For example, with-

out considering the impact of different quality degrees

in the vectorization process, the vectorization result of

{(Robert, 0.9), (Bob, 0.1)} is (1.9, 0, 1, 1.8, 0); other-

wise, the vectorization result is (1.1, 0, 1, 0.2, 0).

In the vectorization process, each vector is mapped

into a hash value through LSH hash function family[31].

Then we can obtain all the similar relationship with the

same hash value. Taking each uncertain attribute value

as a vertex and each similar pair as an edge between

two vertices, the uncertain attribute value set can be

represented as a graph. The graph reflects the similar

relationship of all the uncertain attribute value sets.

Therefore, the problem of clustering similar attribute

values could be converted to the problem of graph clus-

tering or community detection[40]. Recently many stu-

dies have been done on graph clustering and community

detection. In EntityManager, we adopt the CNM[41] al-

gorithm to get the cluster.

Sample Method to Estimate Result Size. The sam-

ple method is based on random sampling. Our estima-

tion method randomly takes samples from each cluster

to get sample sets, and then performs the threshold

entity similarity join on this sample sets to estimate

the result size. Suppose that R and S are two join

entity tables, CRi
and CSj

are the i-th and the j-th

cluster set of R and S, respectively. SCRi
and SCSj

are the sample set from CRi
and CSj

respectively. If

the threshold entity similarity join size of SCRi
and

SCSj
is n, the estimation join size of CRi

and CSj
is

|CRi
| × |CSj

| × n/(|SCRi
| × |SCSj

|).

5.2.3 Entity Similarity Multi-Join Order Selection in

EntityManager

Entity similarity multi-join is the entity similarity

join related to multiple entity tables. Its cost associates

with the size of the intermediate results generated in the

join process and the indices on the join tables. Based on

these two factors, we establish the corresponding cost

model. By the cost model, the entity similarity multi-

join order selection method adopts traditional multi-

join optimization algorithm[36] to decide the order of



656 J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

the join between entity tables.

The most important parameter in the cost model

is the size of the intermediate results during the join

process. If the join tables with a small result size take

precedence on execution, the time and memory perfor-

mance will be improved. However, it is insufficient to

consider the intermediate size only. If the join tables

have indices in the join attribute, we can avoid scan-

ning disk in the actual join execution process, which

will greatly reduce I/O cost.

Based on the above facts, we use intermediate result

size and index as the major cost to optimize multi-join

order. The cost model can be expressed as a function

defined as follows:

cost(R,S : a) = α(Index(R : a) + Index(S : a) +

(1− α)(cost(R) + cost(S) +

mresult(R) +mresult(S)),

where R and S are the tables involving the join process,

cost(R,S : a) is the join cost of R and S on attribute

a, cost(R) is the cost of generating R, mresult(R) is

the size of generated temporary table in the join pro-

cess, and Index(R) represents I/O cost, which works

only when R is an original table. Evidently, if R is

the original table, cost(R) = 0 and mresult(R) = 0.

Besides, α is the weight of index structure in the total

cost. We suppose that the temporary table is stored in

memory, and hence it does not need the I/O operation.

The Index() function is defined as follows.

Index(R : a) =

{

|R|, if bool(R : a) = 0,

0, if bool(R : a) = 1,

where bool (R : a) denotes whether R has index on at-

tribute a. If there exists an index over R, bool(R : a) =

1; otherwise, bool(R : a) = 0.

Based on the cost model, we use an existing multi-

join sequence selection algorithm[36] to optimize the or-

der of multi-join. When the number of entity join tables

is small (no more than 5), the dynamic programming

method[36] can be used to return the optimal order of

join. However, when the number of entity join tables is

large, dynamic programming will result in the calcula-

tion cost increasing exponentially with the number of

entity tables. However, we can use a heuristic search

strategy, such as the greedy algorithm[36] to get a better

join order.

6 Experiments

We conducted experimental evaluations on Entity-

Manager using both real and synthetic datasets. The

system was evaluated from three aspects, namely the

efficiency of the system under different query settings

for different data types, the effectiveness of the system

compared with the traditional relation database, and

the usability of the system through question testing.

6.1 Experimental Setting

All the experiments were conducted on a PC with

2.93 GHz Interr CoreTM2 Duo CPU with 4 GB main

memory.

We used two real-life datasets. The first one is pub-

lication dataset. We extracted 1) 100M publications in

DBLP 1○, which includes 1.5M authors, 2.5M papers,

and 8k venues (conferences/journals), 2) 30M publica-

tions in ACM 2○ including 0.7M papers and 0.4M au-

thors from IEEE Xplore 3○, and 3) 65M publications

including 1.5M papers and 1M authors from IEEE

Xplore 3○. We adopted entity resolution method in [42]

to obtain two entity tables: paper and author. The

schema of the table paper is (title, venue, year),

and the schema of table author is (name, title),

where the title is the paper title. The entity table

paper has 3 567 342 tuples and the entity table au-

thor has 987 453 tuples. We found that 56% of the ta-

ble paper and 63% of the table author have multiple

values in their attributes, and 90% of multi-value oc-

curs in the attributes of title and author. We then

extracted 1M tuples from entity tables author and

paper. Note that we only extracted tuples which have

multi-value attribute tuples. For these extracted data,

we retrieved the relevant data in the raw tables (before

entity recognition), aiming to compare the effectiveness

of our system with traditional systems. The second one

is electronic commerce data. We crawled book infor-

mation in computer science category from eBay 4○ and

Amazon 5○. Then we adopted existing entity resolu-

tion method[42] to get 1.6M entity tuples. Each tuple

1○http://dblp.uni-trier.de/, Mar. 2017.
2○www.acm.org/dl, Mar. 2017.
3○http://ieeexplore.ieee.org, Mar. 2017.
4○http://www.ebay.com, Mar. 2017.
5○http://www.amazon.com, Mar. 2017.
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includes four entity attributes: booktitle, author,

publication, and price. The average number of the

attribute value is 3 in author, 2 in booktitle, 1.5

in publication and 3 in price. We divided the entity

tables into two tables, and then did the entity simi-

larity join process at attribute booktitle to get the

relative similarity information between their price and

author attributes.

We also developed a data generator to produce en-

tity data including numeric type attributes and string

type attributes. It is controlled by the number of entity

tuples m and the number of attributes n. Specifically,

for each entity, the number of each attribute value is

uniformly distributed between 1 and 5. The quality de-

gree of each possible attribute value is randomly gene-

rated from 0.01 to 1, and these possibilities sum up to

1 for each attribute. For the string type attributes, we

controlled the string length in 35 characters. For the

numeric type attributes, we produced the numeric value

with different distributions.

Experimental Map. To verify the efficiency of query

processing in EntityManager, we made the following

two evaluations over the syntactic dataset and the real-

life dataset: 1) the scalability of the range query pro-

cessing and 2) the scalability of the entity similarity

search and join, compared with Bed-trees[19] for the

string similarity search and Ed-Join algorithm[17] for

the string similarity join. We revised these two algo-

rithms by adding a checking stage to get the entity re-

sults to implement the entity similarity search and join

operators.

To check the performance of the query optimization

techniques in EntityManager, we made the following

two evaluations: 1) the result size estimation algorithms

for the range query and the entity similarity join query

respectively, and 2) the indices for the entity similarity

search and the entity similarity join queries.

To demonstrate the effectiveness of the system, we

did a case study and a usability study over the publi-

cation dataset for the entity similarity search and the

join queries. The experimental results are reported in

Fig.5.

6.2 Efficiency of EntityManager

6.2.1 Efficiency of Query Processing

Firstly, we evaluated the efficiency with average

time by randomly performing five times for 1) range

queries for numeric type attributes, and 2) EQL queries

including the entity similarity search and the join for

string type attributes. The threshold is set to a de-

fault value of 0.5. Fig.5(a) reports their performance

on the publication data and the electronic commerce

data. We found that the queries with the entity simi-

larity join operator take more time than the queries

with the entity similarity search operator. It is evident

that the join operator needs to handle more string pairs

than the search operator. We also found that the range

queries have good performance. Here the range queries

were tested on the attributes price and year, and took

B-tree as their index structures.

6.2.2 Scalability of Query Processing

In the next stage, we evaluated the scalability of

the entity similarity search, the entity similarity join,

and the range query. Here we generated synthetic data

by setting the number of entity tuples in the table to

m = 10 k, 50 k, 100 k, 200 k, 400 k, 800 k and 1 M. And

we produced numeric data with uniform distribution.

All the queries were performed five times and the ave-

rage time was taken as the present results. In addition,

we compared our algorithms with existing algorithms:

Bed-tree[19] for the entity similarity search and Ed-Join

algorithm[17] for the entity similarity join. These two

algorithms have a good performance in the similarity

search and the similarity join applications. Since simi-

larity search and join algorithms in related work have

been compared with Ed-Join in [19] and Bed-tree in

[17], we did not compare our algorithms with them.

Figs.5(b)∼5(d) report their performance. We have the

following three observations: 1) ES-JOIN has better

performance than Ed-Join, since the bilayer-prefix in-

dex can filter more entity candidates than Ed-Join; 2)

the Fgram-Tree based algorithm performs better than

the Bed-tree algorithm, since Fgram-Tree ensures that

the similar entities are grouped into the same index

nodes and lots of redundant computation is avoided; 3)

the computation time increases as the number of en-

tity tuples increases for both the string type and the

numeric queries.

Here, we did not compare the range query algorithm

with existing methods because we just took B-tree as

the index, which is the common method used in the

range search. We will put a novel algorithm especially

for the range query in the further work.

6.2.3 Performance of Query Optimization

The query optimization techniques used in Entity-

Manager are estimating the result size for the range

query and the entity similarity join query. The system
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uses the estimation results to generate query plans. We

tested the performance of the estimation methods over

the synthetic dataset. The entity tuple size varies from

10k to 1M. Firstly, we compared the efficiency of the

query plan generated by estimation methods with the

query plan generated by random selection. Here, the

query combines the range query and the entity simila-

rity join query involved four join tables. Fig.5(g) shows

the results. We found that using our optimization tech-

nique, the query processing has better performance and

the accelerated ratio is close to 2.

We then tested how the number of entity tables af-

fects the performance of the entity similarity join al-

gorithm. Here we increased the number of join tables

involved the query from 3 to 6. The number of tuples of

each table is set to 10k. Fig.5(h) shows the results. We

found that the optimization query plan always performs

better than the random selection query plan.

We also evaluated the time cost of the query plan

generation. We tested the cost of the result size es-

timation for the range query and the entity similarity

join query. Table 4 and Table 5 report the results. We

found that the estimation stage costs very little time in

the whole query processing time.

Table 4. Cost of Entity Similarity Join

Dataset Size Estimation Entity Join Ratio

Time (s) Time (s) (%)

10k 0.100 5 2.0

50k 0.172 11 1.5

100k 0.428 23 1.8

200k 0.719 36 1.9

500k 1.234 46 2.6

800k 2.356 67 3.5

1M 3.345 89 3.7

Table 5. Numeric: Range Query

Dataset Size Estimation Query Ratio

Time (s) Time (s) (%)

10k 0.010 1.0 1.0

50k 0.032 1.5 2.1

100k 0.112 3.0 3.7

200k 0.151 4.0 3.7

500k 0.255 6.0 4.2

800k 0.436 10.8 4.0

1M 0.523 12.5 4.1

Finally, we tested the relative error for the estima-

tion methods. For the range query, we used the his-

togram to estimate its result size. Since the data dis-

tribution will affect the accuracy of the estimation re-

sults, we tested the relative error over data with uni-

form, normal, zipf and real data distributions. For the

entity similarity join query, we compared our method

with the simple random sampling method. Fig.5(i) and

Fig.5(j) show the results. We found that both of the

estimation methods have a low relative error.

6.3 Effectiveness of EntityManager

We used a case study and a usability study to eva-

luate the effectiveness of EntityManager.

6.3.1 Case Study

We first demonstrated the effectiveness of Entity-

Manager through comparing it with the traditional re-

lation system on the publication dataset. We used 100

queries including range queries over price attribute

and entity similarity search queries and entity simi-

larity join queries over string attributes. Each query

was tested five times to get the average results. We

used recall and accuracy to show the comparison re-

sults. Here, the recall is the fraction of the returned

answers that should be returned. The accuracy is the

fraction of the corrected answers in the returned an-

swers. Fig.5(k) shows the results. We found the follow-

ing issues. 1) The accuracy of EntityManager is a bit

lower than that of the traditional relation system, since

EntityManager may return false positive results. 2) The

recall of EntityManager is higher than that of the tra-

ditional relation system for both the numeric type and

the string type queries. This is because for a specific

entity, the query results produced by the traditional

relational database may miss some tuples representing

this entity. 3) Although the recall and the accuracy of

EntityManager cannot achieve 100%, they are higher

than 80%, which can be acceptable by most users and

applications. Note that the accuracy of EntityManager

depends on the accuracy of the entity resolution tech-

niques; thus our system will perform better with the

improvement of the precision of the entity resolution

techniques.

Next, we tested how the threshold parameter im-

pacts the recall and the accuracy of EntityManager.

We set the threshold value to 0.1, 0.3, 0.6, 0.9 and 1.0

respectively. The results are shown in Fig.5(l). We ob-

served that 1) the recall rate decreases as the threshold

increases, because of the fact that EntityManager fil-

ters out the low-quality results but these results may

satisfy the query constraint; 2) the accuracy rate keeps
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the same in different threshold settings, since the accu-

racy of the results only depends on the accuracy of the

entity resolution algorithm.

6.3.2 Usability Study

We used question testing to test the usability of

our system. The used testing data is the publication

dataset, and the testing question is shown in Table 6.

When a user began to test, he/she was asked to run

the same query task (randomly chosen from the query

set) in both EntityManager and the traditional relation

database: Mysql. We called the above systems as A and

B, respectively. After using both the systems, the user

was asked to provide optional answers to the question

of which system you think is more useful. Note that,

in our evaluation, no hints and guides were provided.

Such a method was also used in the usability test of

[43].

Table 6. Results of Usability Study about the Question

Which System You Think Is More Useful

Feedback Percentage of Participants

A is much more useful than B 50

A is slightly more useful than B 40

A and B are roughly the same 5

B is slightly more useful than A 3

A is much more useful than B 2

We asked 30 undergraduate students to participate

the testing anonymously and voluntarily. Eventually,

we got all feedback. The feedback is shown in Table 6.

As we can see in Table 6, overall 90% of participants

think that the usability of EntityManager is better than

that of the traditional relation database. Only 10% of

participants have the opposite opinion.

7 Research Challenges

Big Data and Parallel Implementations. When

datasets get very large, the traditional centralized pro-

cessing may bring efficiency problems and be infeasi-

ble with limited system resources (e.g., CPU, I/O, and

memory). To address these problems, we attempt to

design novel parallel algorithms to do query process-

ing, and the parallel algorithms bring research chal-

lenges including the storage strategy to adapt parallel

implementation, and the extension from centralized al-

gorithms to parallel algorithms.

OLAP on the System. Now EntityManager only

supports aggregation with several standard aggregation

functions. In existing e-bossiness applications, with in-

formation integrated from multiple data sources, the

OLAP on dirty data is in requirement. With this mo-

tivation, we attempt to study the OLAP on dirty data

with efficient operations including cube, slicing, roll-up

and drill-down.

Transaction Management. Currently, the transac-

tion management in our system is very simple. A

practical database management system requires effec-

tive transaction management. The concurrency control

of our system requires the lock on the entity level and

new strategies should be adopted to ensure the correct

results for concurrent operations. Thus, we attempt

to study novel transaction management techniques for

EntityManager.

8 Conclusions

In this paper, we described EntityManager, a sys-

tem for managing dirty data with the entity as the

basic unit and keeping conflicts in data as uncertain

attributes. We introduced the reality demands and

current challenges to manage dirty data, which are

the motivation of our system. We gave an overview

of query processing techniques and query optimization

techniques especially designed for EntityManager. Fi-

nally, the effectiveness and the efficiency of our strategy

were verified by experiments.

More efficient OLAP and transaction management

techniques and a parallel system will be developed in

our future work.
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