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ABSTRACT For data analytics jobs running across geographically distributed datacenters, coflows have
to go through the inter-datacenter network over relatively low bandwidth and high cost links. In this
case, optimizing cost-performance tradeoffs for such coflows becomes crucial. Ideally, decreasing the
coflow completion time (CCT) can significantly improve the network performance, meanwhile, reducing
the transmission cost introduced by these coflows is another fundamental goal for datacenter operators.
Unfortunately, minimizing both the CCT and the transmission cost are conflicting objectives that cannot be
achieved concurrently. Prior methods have significant limitations when exploring such tradeoffs, because
they either merely decrease the average CCT or reduce the transmission cost independently. In this paper,
we focus on a cost-performance tradeoff problem for coflows running across the inter-datacenter network.
Specifically, we formulate an optimization problem, so as to minimize a combination of both the average
CCT and the average transmission cost. This problem is inherently hard to solve due to the unknown
information of future coflows. Therefore, we present Lever, an online coflow-aware optimization framework,
to balance these two conflicting objectives. Without any prior knowledge of future coflows, Lever has been
proved to have a non-trivial competitive ratio in solving this cost-performance tradeoff problem. Results
from large-scale simulations demonstrate that Lever can significantly reduce the average transmission cost,
and at the same time, speed up the completion of these coflows, compared with the state-of-the-art solutions.

INDEX TERMS Scheduling algorithms, optimal scheduling, performance analysis.

I. INTRODUCTION
Data-parallel jobs are increasingly running across geograph-
ically distributed datacenters as well as between public
clouds [1]–[6], with the purpose of processing large volumes
of data that are generated and stored all over the world. A key
feature of these jobs is that a collection of flows, termed
coflow [7], will be generated to transfer the intermediate
data between successive computation stages (e.g., map and
reduce). A coflow will not finish only until all its flows have
completed.

In the context of geo-distributed settings, all flows of
a coflow necessarily have to be transferred across the
inter-datacenter network (as shown in Fig. 1), resulting in
a cost-performance tradeoff problem. On the one hand,
the inter-datacenter bandwidth is an expensive and scarce

resource that can cost up to hundreds of millions of dollars
annually [8], [9]. On the other hand, data volumes of the
coflow could be enormous for jobs running across geo-
distributed datacenters [1], and speeding up the completion
of the coflow has significant impact on the performance of
the corresponding jobs [10], [11].

However, optimizing such cost-performance tradeoff for
coflows running across geo-distributed datacenters is inher-
ently a hard task. Simply minimizing the coflow completion
time (CCT) could lead to high inter-datacenter transmis-
sion cost. Even worse, simply optimizing the inter-datacenter
transmission cost can arbitrarily increase CCT of coflows.
This is mainly due to the fundamental difference between
these two metrics, and the high variability in available band-
width [1], [12], [13] as well as the transmission cost per unit
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FIGURE 1. An illustrative example of a coflow consisting of 6 individual
flows that necessarily have to traverse the inter-datacenter network.

data [14]–[16] of different inter-datacenter links. In this con-
text, cost savings can typically be achieved by switching the
traffic to low cost links, whereas CCT speedups are obtained
by fully exploiting high-capacity links for data transmission.

To the best of our knowledge, no existing solutions are
in place to solve such cost-performance tradeoff problem
for coflows across geo-distributed datacenters. First, most
existing work only considers optimizing CCT of coflows
by efficiently scheduling (and routing) all flows within each
coflow [10], [11], [17]–[22]. Second, although some exist-
ing methods investigate how to reduce the transmission cost
introduced by inter-datacenter transfers [15], [16], [23], they
do not take into account the flow dependency semantics and
thus are all coflow-agnostic.

In this paper, we focus on the cost-performance tradeoff
problem for coflows running across geo-distributed datacen-
ters. Our primary focus is to minimize the inter-datacenter
transmission cost as well as CCT of coflows. To this end,
we blend the advantages of coflow routing and scheduling
techniques to formulate an optimization problem, where the
key objective is to minimize a combination of the average
transmission cost and the average CCT across all coflows.
This problem takes into account heterogeneous bandwidth
capacities, diverse costs for transmitting one unit data on
different links, and varying coflows arrival time. Unfortu-
nately, due to the unknown information of future coflows, it is
challenging to obtain an optimal solution for this optimization
problem. To tackle this challenge, we present Lever, an online
coflow-aware optimization framework. In Lever, we formu-
late a linear programming (LP) and handle it with the standard
LP solver to derive routing and scheduling decisions for each
coflow as soon as it arrives. Based on the optimal solution
of the corresponding LP for each coflow, we then propose
an efficient online algorithm to handle the multi-coflow sce-
nario. The key idea of this online algorithm is to rescale
the bandwidth allocation of each coflow based on a specific
weight factor, while keeping the original routing decision
of each coflow. Results from rigorous theoretical analysis
prove that Lever can have a non-trivial competitive ratio
when solving the original cost-performance tradeoff problem.
To evaluate the performance of Lever, we conduct extensive
simulations based on a real-world data trace provided by

Facebook [18], [24]. Compared to the state-of-the-art solution
RAPIER, Lever can reduce the average transmission cost
by 49.72%. On the other hand, comparing with the Cost-
only scheme, Lever can also decrease the average CCT of
coflows.

In summary, the main contributions of this paper are as
follows:
• We study a cost-performance tradeoff problem for
coflows running across geo-distributed datacenters.
Specifically, we formulate this problem as an optimiza-
tion problem, so as to minimize a combination of the
average CCT and the average transmission cost.

• We present a new coflow-aware optimization frame-
work, Lever, to solve this cost-performance tradeoff
problem.Without any prior knowledge of future coflows
required, we show that Lever has a good competitive
ratio in solving this cost-performance tradeoff problem.

• We conduct extensive trace-driven simulations to eval-
uate the performance of Lever. The results demonstrate
that Lever can efficiently tradeoff the average CCT and
average transmission cost, compared to state-of-the-art
solutions.

The remainder of this paper is organized as follows.
In Section II, we discuss the background and challenges of
optimizing the cost-performance tradeoff for coflows across
geo-distributed datacenters, also employ a motivating exam-
ple to elaborate this problem. In Section III, we develop
a mathematical model and formulate the cost-performance
tradeoff problem. In Section IV, we propose an algorithm in
Lever that seeks to minimize the average CCT and average
transmission cost by routing and scheduling coflows effi-
ciently. The experiment results are presented in Section V.
Section VI discusses the related work and Section VII con-
cludes this paper.

II. BACKGROUND, MOTIVATION AND CHALLENGES
In this section, we first present the background and employ
an example to motivate our cost-performance tradeoff prob-
lem for coflows across geo-distributed datacenters. We then
present the challenges of this problem.

A. BACKGROUND AND MOTIVATION
In today’s inter-datacenter networks, there could be signif-
icant heterogeneity in both bandwidth capability and per
unit transmission cost of different inter-datacenter links.
According to the results of real-world connectivity mea-
surement from Amazon EC2 in study [13], the available
cross-datacenter bandwidth varies significantly among dif-
ferent inter-datacenter links: the highest bandwidth can be
100 Mbps larger than the lowest. On the other hand, different
inter-datacenter links may be charged by different Internet
Service Providers (ISPs) [15], [16] with different pricing
models and strategies. In such a case, the cost of transmitting
the same amount of data will also vary significantly across
different inter-datacenter links.
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FIGURE 2. A motivating example, where (a) shows a scheme that simply minimizes the average CCT, while (b) shows a scheme that simply minimizes the
transmission cost.

While recognizing the above heterogeneities, we employ
a motivating example in Fig. 2 to exibit a better intuition of
this problem. In our example, there is an inter-datacenter net-
work consisting of 4 datacenters with 4 links. The bandwidth
capacity and per unit transmission cost of each link is shown
in the figure. Moreover, there are two coflows: Coflow A
has one flow which requires transferring 80 Gb from DC2 to
DC3; Coflow B has two flows, with one transferring 80 Gb
from DC1 to DC4 and the other transferring 80 Gb from
DC2 to DC4, respectively. As shown in Fig. 2(a), when
simply minimizing the average CCT of these two coflows,
the optimal strategy is as follows: from t = 0 to t = 5, routes
the flow in coflow A along the direct path DC2→DC3 with
16 Gbps; from t = 0 to t = 6.66, routes the flow of
DC1 to DC4 in coflow B along the direct path with 12 Gbps,
while routes the other flow in coflow B along a detoured path
DC2→DC1→DC4 with 12 Gbps. In such a case, CCTs of
coflows A and B are 5s and 6.66s, respectively, and thus the
average CCT is 5.83s. Though this scheme can minimize the
average CCT, it introduces high transmission cost, i.e., 80 ∗
10 + 80 ∗ 1 + 80 ∗ (1 + 1) = 1040. On the contrary,
if switching the flow in coflow A to another detoured path
DC2→DC1→DC4→DC3, the total transmission cost can
then be reduced to 480, as shown in Fig. 2(b). Unfortunately
the average CCT will be increased to 7.5s at the same time.
This implies that there is a tradeoff point between the objec-
tives of minimizing both the average CCT and the transmis-
sion cost.

B. CHALLENGES
The above example with simple settings looks straightfor-
ward. Nevertheless the general problem of jointly considering
coflow scheduling and routing to simultaneously minimize
the average CCT and the transmission cost can still be dif-
ficult due to the following challenges. First, the two goals
of minimizing the average CCT and minimizing the trans-
mission cost contradict with each other: simply achieving
one goal can result in negative impact on the other goal.
Second, the coflow scheduling decision will impact the rout-
ing decision, implying that coflow scheduling and coflow
routing are deeply coupled with each other. Third, in most
real-world situations, we can only know all the information

about coflows that have arrived, making it even harder to
obtain an optimal solution.

III. MODELING AND PROBLEM FORMULATION
In this section, we develop a mathematical model to study the
optimization problem of jointly considering coflows schedul-
ing and routing to simultaneously minimize the transmission
cost and the average CCT of coflows.

A. MATHEMATICAL MODEL
We abstract the inter-datacenter network as a directed graph
G = (N ,L), where N is the set of datacenters and L is the
set of links. Each link l ∈ L has a bandwidth capacity Rl .
To indicate the cost diversity of different links, let cl denote
the cost of transmitting one unit of data on link l.

A coflow is a set of correlated parallel flows, where a
coflow can only be considered as finished after all its parallel
flows have been completed. Let K denote the set of coflows.
Each coflow arrives at time τk , with a set of flows Fk . For
each flow i ∈ Fk , let ski , e

k
i and dki denote the source node,

destination node and its volume, respectively. Let Pk
i denote

the set of feasible paths for flow i ∈ Fk .
To indicate the routing decision, we let αki,p denote the per-

centage of volume dki that is routed along path p ∈ Pk
i . Fur-

thermore, to indicate the scheduling decision, we let bki,p(τ )
denote the bandwidth allocated to flow i ∈ Fk on path p ∈ Pk

i
at time τ . Note that bki,p(τ ) can be zero for some τ ’s, which
means this flow is either waiting for transmission, or not
routed along path p. The main notations used throughout this
paper are listed in Table 1.

Remarks: In our mathematical model, a flow can poten-
tially be routed along multiple paths, resulting in packet-level
reordering. In fact, such problem can be effectively resolved
with mature techniques like MPTCP [25]. Moreover, similar
to existing studies [11], [18], [22], [26], all information about
flows for a given coflow is assumed to be known as soon as
this coflow arrives.

B. PROBLEM FORMULATION
We are now in a position to formulate the cost-performance
tradeoff problem formally as an optimization problem that
simultaneously minimizes both the average transmission cost
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TABLE 1. Notations and definitions.

and the average CCT of coflows across geo-distributed data-
centers, as shown in the following problem P1:

min
αki,p,b

k
i,p(τ )

1
K

∑
k∈K

tk+
1
K

∑
l∈L

cl
∑
k∈K

∑
i∈Fk

∑
p∈Pk

i

I(l∈p)dki α
k
i,p (1)

We’d not deep dive P1 but only a briefing here. Eq. (1)
is the objective function that minimizes a combination of
the average CCT and average transmission cost across all
coflows. The term 1

K

∑
k∈K tk is the average CCT of coflows,

and the term 1
K

∑
l∈L cl

∑
k∈K

∑
i∈Fk

∑
p∈Pk

i
I(l∈p)dki α

k
i,p is

the average transmission cost caused by all coflows, where
I(l∈p) is equal to 1 if l ∈ p and 0 otherwise. Note that by adding
weight factors in front of both the average CCT and the
average transmission cost, any desired tradeoff point between
these 2 objectives can be achieved, e.g. if one is just willing to
pay for a bit more performance. In addition, such preference
between performance and cost may also vary along with the
specific DCI setting, e.g. private WAN or public cloud. For
simplicity, we assume the weight factor for each of conflict-
ing objectives is set to 1.

Intuitively, the above problem P1 is a LP problem, and it
may be a step towards the right direction to design an offline
optimal coflow scheduling and routing algorithm, such that
both the average CCT and the average transmission cost can
be minimized simultaneously. However, such offline algo-
rithm inevitably relies on a prior knowledge of all the infor-
mation about future coflows, including the source/destination
nodes as well as the volumes. Such information can only be
known when a coflow arrives, and can not be predicted with-
out large-scale complex prediction techniques and systems.
Hence, an online algorithm is more desired to solve P1.

IV. LEVER DESIGN
In this section, we propose an online control framework—
Lever, to efficiently tradeoff the average CCT and total
transmission cost for coflows running across geo-distributed

datacenters, by coordinating both coflow scheduling and
routing techniques. In this design, we will formulate a LP
problem for each coflow as soon as it arrives. Based on
the optimal solution of this LP, we rescale the bandwidth
allocated to all existing coflows, meanwhile keeping the orig-
inal routing decision for each coflow. In the following parts,
we start by showing how to optimize the cost-performance
tradeoff problem for a single coflow.

A. SINGLE COFLOW COST-PERFORMANCE TRADEOFF
We consider a special case, where there is only one coflow in
the network. This coflow carries a set of individual flows F ,
with the data volume of each flow i ∈ F being dki . Let Pi
denote the set of feasible paths for flow i. Denote bi,p and αi,p
as the scheduling and routing decisions, respectively. Nowwe
have the following optimization problem, denoted as P2:

min
αi,p

t +
∑
l∈L

cl
∑
i∈F

∑
p∈Pi

I(l∈p)diαi,p (2)

subject to:
∑
i∈F

∑
p∈Pi

I(l∈p)bi,p ≤ Rl, ∀l ∈ L (3)

∑
p∈Pi

αi,p = 1, ∀i ∈ F (4)

bi,p · t = αi,pdi, ∀i ∈ F , ∀p ∈ Pi (5)

αi,p ≥ 0, ∀i ∈ F , ∀p ∈ Pi (6)

The variable t represents CCT of this coflow, and the term∑
l∈L cl

∑
i∈F

∑
p∈Pi

I(l∈p)diαi,p calculates the transmission
cost that would be produced by this coflow. Eq. (3) is the
link capacity constraint, Eq. (4) implies that the summation
of all flow splits must be exactly equal to the volume of each
flow. It should be noted that the scheduling decision variable
is a function of time in the previous mathematical model
(Section III), but problem P2 treat it as a constant value here.
This implies that for a flow i routing along path p, its band-
width should be equal to bi,p when the corresponding flow
being transmitted, or zero when finished. As such, bi,p can
directly be calculated via Eq. (5). Similarly, Eq. (6) implies
that all the routing decision variables are non-negative.

It is clear that problem P2 is a LP problem with up to |F |×
maxi |Pi| variables, where |F | is the number of flows in this
coflow and maxi |Pi| is the maximum number of paths across
all sets of Pi,∀i. Since P2 is a LP, it can be easily solved
by standard linear programming solvers e.g. MOSEK [27].
Therefore, once a coflow arrives, we can immediately obtain
its routing and scheduling decisions by solving the relevant
LP problem.

B. EXTENDING TO THE MULTI-COFLOW SCENARIO
When there are multiple coflows coexisting in the network,
we treat the LP solution for each coflow as a black box,
and design a competitive algorithm to solve the original
problem P2. The key idea here is that when a new coflow
arrives, we first formulate a relevant LP problem P2, and then
solve this LP with standard LP solver to obtain its routing
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and scheduling decisions. Finally, we rescale the bandwidth
allocation of all coflows but keep the original routing decision
for each coflow.

The whole procedure to handle this multi-coflow scenario
is shown in Algorithm 1. To avoid frequent calculations,
it computes the routing decision for each coflow only once,
by solving the relevant LP problem P2 with the assump-
tion that each coflow occupies the network exclusively. The
routing and scheduling decisions computed for each coflow
are then stored in {{αki,p}, {b

k
i,p}} to avoid duplicated calcula-

tions in future. Since there are multiple coflows coexisting
in the network, coflows can significantly interact with each
other. In such a case, the stored solution for each coflow
may become infeasible, as the network is shared by multiple
coflows, rather than a single coflow. To make the solution
for each coflow still be feasible, Algorithm 1 scales down
the bandwidth allocation for each coflow k with a weight
factor εk . The weight factor εk is computed based on the
optimal objective of the LP problem P2, and is specific to
each coflow k . Suchweight factor can somehowguarantee the
fairness amongmultiple competing coflows: more bandwidth
will be allocated to large coflows, while short coflows be
given relatively less bandwidth. Finally, after re-weight the
scheduling decision, Algorithm 1 again scales the bandwidth
allocation for all coflows by a same largest possible factor,
so as to achieve the desired result of optimization.

C. PERFORMANCE ANALYSIS
Algorithm 1 essentially divides the original problem P1 into
multiple sub-problems, and then leverages optimal solutions
of all sub-problems to construct one feasible solution of
P1. So, one may question that what is the optimality of
Algorithm 1 with respect to the original problem P1.
To answer this question, we state the following lemma and
theorem with proof to demonstrate that Algorithm 1 has a
good competitive ratio for P1.
Lemma 1: For each coflow k , denote OPT kP2 as the

optimal objective value with respect to the LP problem
P2, and let OPT kalg denote the objective value substitut-
ing for the routing and scheduling decisions achieved by
Algorithm 1 in Eq. (2). As such, we have OPT kalg ≤

1
ε
OPT kP2

for all k , where ε := mink∈K εk .
Proof: Given a coflow k , define {{α̇ki,p}, {ḃ

k
i,p}} as the

optimal solution with respect to problem P2. Thus, we have
the following equality:

OPT kP2 =
α̇i,pdi
ḃi,p
+

∑
l∈L

cl
∑
i∈F

∑
p∈Pi

I(l∈p)diα̇i,p

On the other hand, when multiple coflows coexist in the
network, Algorithm 1 only rescales the bandwidth allocation
for each coflow k with the factor εk , while always keeps its
original routing decision. Thus, we have:

OPT kalg =
α̇i,pdi
εk ḃi,p

+

∑
l∈L

cl
∑
i∈F

∑
p∈Pi

I(l∈p)diα̇i,p

Algorithm 1 An Online Cost-Performance Tradeoff Algo-
rithm for the Multi-Coflow Scenario
Input: Fk , τk , tk ,∀k; ski , e

k
i , d

k
i ,P

k
i ,∀k,∀i ∈ Fk

Output: Routing and scheduling decisions for all coflows
1: while a new coflow arrives or an existing coflow finishes

do
2: Define � as the set of coflows that are not completed

till the current time.
3: for each coflow k in � do

4: Define εk :=

√
OPT kP2∑

k′∈�

√
OPT k

′

P2

, where OPT kP2 is the

optimal objective value of the LP P2 for coflow k .
5: Update the routing and scheduling solution of k as

{{αki,p}, {εkb
k
i,p}}, where {{α

k
i,p}, {b

k
i,p}} is the optimal

solution to the LP P2 of coflow k;
6: end for
7: Scale the bandwidth of all flows in J� with a same

factor which is the largest possible value to make the
routing and scheduling decisions still be valid, so as to
achieve the desired result of optimization.

8: end while

As εk :=

√
OPT kP2∑

k′∈�

√
OPT k

′

P2

, we have 1
εk
≥ 1 for each coflow k .

Then, we have:

OPT kalg =
α̇i,pdi
εk ḃi,p

+

∑
l∈L

cl
∑
i∈F

∑
p∈Pi

I(l∈p)diα̇i,p

≤
1
εk

 α̇i,pdi
ḃi,p
+

∑
l∈L

cl
∑
i∈F

∑
p∈Pi

I(l∈p)diα̇i,p


=

1
εk
OPT kP2

Defining ε := mink∈K εk , the lemma can thus be inferred.
Theorem 1: Algorithm 1 is K

ε
-competitive for the original

problem P1, where K is the total number of coflows in K.
Proof: LetOPTP1 denote the optimal objective value for

the original problem P1. Since each coflow k can contribute
to OPTP1 with no less than OPT kP2 when it monopolizes
the network, we have OPTP1 ≥ 1

K

∑K
k=1 OPT

k
P2. Define

OPTalg as the objective value substituting for the routing and
scheduling decisions achieved by Algorithm 1 in Eq. (1).
In the following parts, we focus on the proof process of
OPTalg ≤ K

ε
· OPTP1.

Consider the following optimization problem for the subset
� of {1, . . . ,K }:

Minimize
∑
k∈�

OPT kP2
zk

Subject to:
∑
k∈�

zk ≤ 1,
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where zk is a non-negative value. By applying the
Cauchy-Schwarz inequality, we have:∑

k∈�

OPT kP2
zk

≥ (
∑
k∈�

OPT kP2
zk

) · (
∑
k∈�

zk )

≥ (
∑
k∈�

√
OPT kP2)

2.

This implies that when the optimal solution for the above

optimization problem is equal to zk =
√
OPT kP2/

∑
k∈�√

OPT kP2,∀k ∈ �, it can be optimally solved. Thus, for each
� in every iteration of Algorithm 1, weighted factor εk ’s are
optimally picked with respect to �. More specifically, εk ’s
have least impact on the optimal objective function OPTP1
when rescaling the bandwidth of each coflow.

Define ε(K )
k :=

√
OPT kP2/

∑K
k=1

√
OPT kP2. Since � might

be a subset of {1, . . . ,K }, we have the following inequality
for any k:

εk ≥

√
OPT kP2∑K

k=1

√
OPT kP2

= ε
(K )
k .

Combining with Lemma 1, we have the following inequality:

OPT kalg
εk

≤
OPT kalg

ε
(K )
k

≤
1
ε
·
OPT kP2
ε
(K )
k

=
1
ε

√
OPT kP2

K∑
k=1

√
OPT kP2.

By applying the Cauchy-Schwarz inequality again, we get

OPTalg =
1
K

K∑
k=1

OPT kalg
εk

≤
1
K

K∑
k=1

OPT kalg

ε
(K )
k

≤
1
Kε

(
K∑
k=1

√
OPT kP2)

2

≤
1
ε

K∑
k=1

OPT kP2

≤
K
ε
OPTP1.

Thus, proved.

V. PERFORMANCE EVALUATION
In this section, we conduct real-world trace-driven simula-
tions to realistically evaluate the performance of the algo-
rithm we proposed. Specifically, we examine CCT and the
corresponding cost for each coflow, as well as quantify the

TABLE 2. Coflows categorized by length and width.

performance of our algorithm regarding to the average CCT
and average transmission cost. In the following parts, we start
by presenting the simulation setup, then showing the simula-
tion results.

A. SIMULATION SETUP
We simulate an inter-datacenter network with 20 datacenters
and 380 (= 20×19) links. To mimic the heterogeneous band-
width environments, the capacity of each inter-datacenter
link is randomly chosen between 100Mbps and 2Gbps. Such
heterogeneous link capacities can practically be archived by
Linux Traffic Control [28]. In our simulation, we adjust the
data transmission cost per unit bandwidth for each link within
the range [0.0003, 0.0012]$/Mb. This range is also utilized by
Amazon to price data transfers in the U.S. east region [29].

We conduct our simulations based on a Hive/MapReduce
trace provided by Facebook [18], [24]. This trace is widely
used in existing literatures that focuses on coflow studies,
which contains 526 coflows collected from a 3000-machines
150-racks cluster. Accordingly, we scale down the above
coflows to match this 20-datacenters inter-datacenter net-
work in our deployment. During the scaling process, we pre-
serve the original communication pattern of the coflows.
It should be noted that the original trace only contains the
amount of traffic which each reducer needs to fetch. Hence,
we distribute them to the mappers in a unified manner,
and accordingly obtain the size of each flow between any
datacenter-pair.

A coflow is a collection of parallel flows which can be
characterized by two key parameters. The first one is the
coflow length, which is defined as the size of the largest
flow in bytes, and the second one is the coflow width—the
number of parallel flows of this coflow. Similar to [18] and
[26], we divide all the coflows used in our simulations into
4 categories based on their characterizes, as shown in Table 2.
More specifically, a coflow is considered to be short if its
largest flow is less than 50Mb and narrow if it has no more
than 20 flows.

In our simulations, we compare the following schemes
with Lever:
• RAPEIR: seamlessly combines routing and scheduling
techniques to optimize the average CCT of coflows [11].
This scheme corresponds to a performance-only scheme
that simply ignores the transmission cost.

• Cost-only: purely minimizes the average transmission
cost for coflows running over the inter-datacenter net-
work, which is conceptually equivalent to the core
method in the literature [15].
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B. SIMULATION RESULTS
1) THE PERFORMANCE ON CCT
Fig. 3 first illustrates the average CCT of coflows achieved
by different schemes. We have the following observations
from this figure: 1) For most of coflow types, our proposed
Lever can maintain an average CCT between RAPIER and
Cost-only schemes. This is reasonable because our proposed
Lever targets on trading off the average CCT and average
cost. One question here is why Lever results in a very high
average CCT for LN type of coflows. The root reason may
be that Lever always routes LN coflows along a same set of
paths. Fortunately, since the percentage of LN is quite small,
the average CCT of LN will not affect the overall average
CCT across the entire set of coflows. 2) Though RAPIER is
a performance-only scheme, it shows higher CCT than the
Cost-only scheme for LW type of coflows. This is because
LW coflows are long and wide, leave RAPIER little space
to optimize the corresponding CCT. 3) Across all types of
coflows, our proposed Lever can speed up the average CCT
by 1.1×, comparing to the Cost-only scheme. Such results
demonstrate that Lever can efficiently decrease the average
CCT of coflows in general.

To understand CCT of coflows at a microscopic level,
we further plot CDF (Cumulative Distribution Function) of
the completion time across all coflows schemes of RAPIER,
Lever and Cost-only in Fig. 4. Note that the X-axes are in
logarithmic scale. We can clearly see that the performance
of Lever on CCT is between that of RAPIER and Cost-
only, as the Lever curve lies between the curves of RAPIER
and Cost-only. We can further check that the percentages
of coflows completed within 1000ms are 37.64%, 32.32%
and 20.34% by RAPIER, Lever, and Cost-only schemes,
respectively. Under these three schemes, all coflows can be
completed within 1370850ms, 1426500ms and 1372950ms,
respectively.

2) THE PERFORMANCE ON THE TRANSMISSION COST
Lever aims at optimizing the tradeoffs between the aver-
age CCT and average transmission cost. Therefore, another
important metric is the transmission cost introduced by
coflows running across geo-distributed datacenters. To quan-
tify this metric, we record the corresponding costs produced
by each coflow, and plot the average cost by RAPIER, Lever,
and Cost-only schemes in Fig 5. Note that the Y-axes are
in logarithmic scale. It is clear that Lever can achieve an
average transmission cost that is between RAPIER and Cost-
only schemes, across all coflow types. Combining the results
of Fig.3 and Fig. 4, we can conclude that Lever can effi-
ciently trade off the average CCT and the average transmis-
sion cost. Furthermore, throughout all coflows, the average
transmission cost introduced by RAPIER, Lever, and Cost-
only schemes are 126.0509$, 63.3836$ and 39.1150$, respec-
tively. This implies that comparing to RAPIER, our proposed
Lever can actually reduce the average cost by 49.72%.

To clearly illustrate the underlying reason for such cost
reduction, we further plot CDF of the transmission cost

FIGURE 3. The average CCT of coflows, achieved by RAPIER, Lever and
Cost-only schemes.

FIGURE 4. CDFs of per coflow CCT by RAPIER, Lever and Cost-only
schemes.

across all coflows by RAPIER, Lever, and Cost-only schemes
in Fig. 6. It can be easily checked that the Lever curve is
between the curves of RAPIER and Cost-only, implying the
performance of Lever on the transmission cost is between
RAPIER and Cost-only schemes as well. We can further
observe that 98% of coflows produce a cost less than 1140$
under the Lever scheme, while regarding to RAPIER and
Cost-schemes, the corresponding values are 2260$ and 700$,
respectively.

Remarks: The above results verify the key idea of Lever:
optimizing tradeoffs between the average CCT and average
transmission cost of coflows running across geo-distributed
datacenters.

VI. RELATED WORK
In this section, we only review some closely related work,
including minimizing the average CCT of coflows and mini-
mizing the transmission cost of inter-datacenter traffic.

Regarding minimizing the average CCT of coflows, exist-
ing work can be divided into three categories based on
the techniques employed. The first category is schedul-
ing. For instance, Varys [18] first applies an SEBF
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FIGURE 5. The average cost of coflows by RAPIER, Lever and Cost-only.

FIGURE 6. CDFs of per coflow cost by RAPIER, Lever and Cost-only
schemes.

(Shortest-Effective-Bottleneck-First) heuristic to determine
the schedule order of multiple concurrent coflows, and
then utilizes an MADD (Minimum-Allocation-for-Desired-
Duration) algorithm to allocate rates to individual flows.
While Varys is efficient, it relies on the complete prior
information of coflows. Motivated by this point, Aalo [10]
applies multi-level feedback queues (MLFQ) to schedule
coflows, without requiring any prior knowledge of coflows.
Taking one step further, CODA [19] employs an algorithm
to automatically cluster network flows into different coflows
before scheduling, such that no modification is needed for
applications to extract coflows. The second category focuses
on combining scheduling and routing to minimize the aver-
age CCT of coflows. RAPIER [11] is perhaps the first
work that seamlessly integrates routing and scheduling to
speed up the completion of coflows in datacenter networks.
But RAPIER’s solution can not provide a theoretical upper
bound of the average CCT. Therefore Li et al. [26] propose
OMCoflow, an efficient online algorithm, to route and sched-
ule coflows simultaneously. OMCoflow has been proved to
provide a theoretical guarantee of the average CCT. The
third category of work is to leverage techniques of endpoint

(or reduce tasks) placement when scheduling coflows in the
network. For instance, CLARINET [6] first assigns locations
to reduce tasks to determine the endpoint placement of flows
firstly, and then schedules the resulting network flows. Nev-
ertheless, it considers endpoint placement and scheduling
independently rather than jointly. Motivated by this work,
Li et al. [22] propose SmartCoflow, which considers the
endpoint placement and coflow scheduling simultaneously.
Although the above methods are efficient in minimizing
the average CCT of coflows, they all neglect an indispens-
able metric—transmission cost that would be caused by the
coflows when running over the inter-datacenter network.
In addition to above three categories of related work, some
focus on achieving fairness among coflows [20], [21], which
also do not consider the transmission cost.

Regarding minimizing the transmission cost of inter-
datacenter traffic, NetStitcher [30] applies a store-and-
forward method, which temporally stores the traffic at inter-
mediate datacenters which to be forwarded to the destina-
tion once there is available bandwidth. Nevertheless, Net-
Stitcher can only reduce the transmission cost for a single
bulk transfer, which is far from realistic. Motivated by this
work, Feng et al. [16] present JetWay, which considers the
co-existence of multiple video flows when minimizing the
transmission cost. Jalaparti et al. [14] present Pretium, which
leverages a dynamic pricing to regulate the traffic among
inter-datacenter links. This can somehow maintain a low
cost for end users, but cannot minimize the transmission
cost for network operators. Most recently, Li et al. [23] pro-
pose to utilize ‘‘free’’ time slots through the percentile pric-
ing model to schedule the inter-datacenter traffic, such that
the transmission cost can have a chance to be significantly
reduced or even minimized. Above methods are efficient
in minimizing the cost for inter-datacenter traffic, which,
however, only focus on individual flows. Actually, there
are also plenty of researches on minimizing the transmis-
sion cost introduced by jobs running across geo-distributed
datacenters. More specifically, Vulimiri et al. [2] focus on
optimizing the execution plan and leveraging techniques of
caching to reduce the cost caused by query jobs running over
the inter-datacenter network. Pixida [3] utilizes the method
of graph partition to minimize the transmission cost. As an
extension of Pixida, WANalytics [4] further employs the
cache mechanism, which, however, can cause overhead when
caching and computing within a datacenter. On the other
hand, JetStream [31] focuses on aggregating and degrad-
ing streaming data before being transmitted over the inter-
datacenter network. Though reducing the transmission cost,
these solutions are actually flow-level which do not consider
the flow dependency semantics, i.e. all coflow-agnostic.

VII. CONCLUSION
In this paper, we jointly consider the objectives of both min-
imizing cost and maximizing performance (i.e., decreasing
the completion time of coflows) when transmitting coflows
across geo-distributed datacenters. To characterize the com-
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bination of these two objectives, we develop a rigorous math-
ematical model and formulate an optimization problem to
minimize the average CCT and average transmission cost
concurrently. Then, we propose a coflow-aware framework—
Lever, to solve this problem in an online manner. Lever first
applies linear programming (LP) to obtain a routing and
scheduling solution for one single coflow, and then extend
this LP to handle multiple, dynamically arrived coflows.
The theoretical analysis shows that Lever has a non-trivial
competitive ratio in solving this cost-performance tradeoff
problem. The experimental results further demonstrate that
Lever can speed up the completion of coflows and reduce the
transmission cost substantially.
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