
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Compound Graph Based Hybrid Data Center Topologies

Lailong LUO 1, Deke GUO 1, Wenxin LI 2, Tian ZHANG 3, Junjie XIE1, Xiaolei ZHOU1

1 Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology,
Changsha, 410073, China

2 Network and Cloud Computing Laboratory, Dalian University of Technology, Dalian, 116024, China
3 School of Information Management, Wuhan University, Wuhan, 430070, China

c⃝ Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract In large-scale data centers, many servers are in-
terconnected via a dedicated networking structure, so as to
satisfy specific design goals, such as the low equipment cost,
the high network capacity, and the incremental expansion.
The topological properties of a networking structure are crit-
ical factors that dominate the performance of the entire da-
ta center. The existing networking structures are either fully
random or completely structured. Although such networking
structures exhibit advantages on given aspects, they suffer ob-
vious shortcomings in other essential fields. In this paper, we
aim to design a hybrid topology, called R3, which is the com-
pound graph of structured and random topology. It employs
random regular graph as a unit cluster and connects many
such clusters by means of a structured topology,i.e. the gen-
eralized hypercube. Consequently, the hybrid topology com-
bines the advantages of structured as well as random topolo-
gies seamlessly. Meanwhile, a coloring-based algorithm is
proposed for R3 to enable fast and accurate routing. R3 pos-
sesses many attractive characteristics, such as the modularity
and expansibility at the cost of only increasing the degree of
any node by one. Comprehensive evaluation results show that
our hybrid topology possesses excellent topology properties
and network performance.

Keywords Data center networking, Compound graph, Hy-
brid topology, Routing design

Received month dd, yyyy; accepted month dd, yyyy

E-mail: guodeke@gmail.com

1 Introduction

Data centers are the dominant infrastructure of cloud com-
puting and network applications. Inside a data center, large
number of servers and switches are interconnected using a
specific data center networking (DCN). That is, all switch-
es are interconnected to form a given networking structure,
and those switches use their remaining ports to connect large-
scale servers. Recently, some novel networking structures
were proposed for future data centers. Such proposals can be
roughly divided into two categories. The first is structured
topologies, each of which organizes switches into structured
networks with strict interconnection rules on components in a
data center. Fat-Tree [1], VL2 [2], BCN [3] fall into this cat-
egory. On the contrary, random topologies break strict inter-
connection rules by introducing random links among switch-
es, e.g. SMDC [4], Jellyfish [5], Scafida [6]. Such structured
topologies exhibit high throughput but are not incremental
expansion. Those random topologies are incremental expan-
sion; however, they suffer complex cabling and routing pro-
cesses. On the other hand, the superiority of structured and
random topologies is complementary. In this paper, the fol-
lowing two fundamental problems motivate us to design new
networking structures that can tightly integrate the superiori-
ty together and abandon the weakness.

Can existing structured topologies of data centers satisfy
the requirements of today’s applications perfectly? For struc-
tured topologies, the strict interconnection rules simplify the
construction of DCNs; however, they limit the incremental
expansion of deployed data centers. In reality, a production

2
Compound Graph Based Hybrid Data Center Topologies

data center needs to be gradually extended along with the in-
creasing demands of applications and users. But the struc-
tured DCNs fail to support the incremental expansion.

Can random topologies truly improve the performance of
DCNs? Random DCNs, such as Jellyfish [5] and Scafi-
da [6], support the incremental expansion naturally. Mean-
while, random links decrease the network diameter by con-
necting remote nodes together. Furthermore, random DCN-
s can integrate heterogeneous devices during the expansion
process [7]. However, beside the cabling cost due to remote
random links, routing and maintenance in random DCNs are
essential issues. First, the Dijkstra or Floyd algorithm, whose
computation complexity is O(n2) or even O(n3), is used to
search the shortest paths between any pair of nodes in ran-
dom DCNs. It is clear that routing in random DCNs is time-
consuming. Second, disordered and unsystematic link dis-
tribution incurs nontrivial maintain cost. That is, running a
random DCN is relative expensive.

Fortunately, the superiorities of structured DCNs and ran-
dom DCNs are complementary. This motivates us to seek
new topologies which can integrate their superiorities togeth-
er and avoid their weakness. For this reason, we propose a
family of hybrid topologies, which are compound graphs of
given structured and random topologies. That is, given num-
ber of random structures are unit clusters, which are then in-
terconnected by means of a structured structure. In this way,
a family of hybrid DCNs is built when utilizing different ran-
dom and structured graph. Consequently, the resulting hybrid
DCNs can naturally integrate the characteristics of incremen-
tal expansion and fast routing via compound graph theory.
Note that any of such hybrid topologies is a structured topol-
ogy from the global viewpoint, while is a random topology
from a local viewpoint.

To fully exploit the benefits of our hybrid topologies, a
coloring-based routing algorithm is proposed to derive the
routing path between any pair of nodes in the hybrid DCN-
s. Typically, a unique identifier, which consists of two parts,
i.e., the inter-identifier and the inner-identifier, is assigned to
each node. The inter-identifier locates the random cluster the
nodes reside in and the inner-identifier locates the node in-
side random clusters. The structured links are colored with
different colors, the two endpoints of each colored link are
assigned with the same inner-identifier. In this way, coupled
with the color of structured links, the inter-identifiers can de-
rived the random cluster level path, then the paths inner each
random cluster can be calculated with shortest path algorithm
like Dijkstra. Then, we build an integer programming mod-
el to minimize the average path length (APL) problem in our

hybrid structures with given number of servers and port count
per switch. Furthermore, a random cluster level expansion al-
gorithm is designed for realizing the incremental expansion.

The major contributions of this paper are summarized as
follows.

• We propose the design methodology of hybrid DCN-
s, which embeds some random clusters into a given
structured topology. We further design a nonlinear in-
teger programming model to derive an optimized hybrid
topology.

• We design an edge coloring based routing algorithm,
whose routing cost is much lower than traditional algo-
rithms. The associated incremental expansion methods
are designed in different levels.

• We conduct extensive experiments. The results demon-
strate that, compared with Jellyfish, our hybrid struc-
tures bring less routing time and cabling cost. Compared
with the generalized hypercube, our hybrid structures
process better network order and throughput.

The rest of this paper is organized as follows. Section 2
summarizes the related preliminaries. Section 3 proposes the
structures of hybrid DCNs, and Section 4 designs the associ-
ated routing algorithm. Section 5 tries to optimize the design
of hybrid DCNs. Section 6 discusses the issue of incremental
expansion. Section 7 evaluates the performance of our pro-
posal. Section 8 introduces the related work, and Section 9
concludes this paper.

2 Preliminaries

To clearly present our proposal, we first introduce the back-
ground and preliminary knowledge. We summarize the defi-
nitions and properties of generalized hypercube and random
regular graph, which are representing structured and random
topologies, respectively.

2.1 Generalized hypercube

Generalized hypercube(GHC) [8] is defined as follows. Let
G(ms,ms−1, · · · ,m2,m1) denote a generalized hypercube of N
node, where N=ms∗ms−1∗ · · · ∗m2∗m1 and mi≥2 for all 1≤i≤s.
Each node has a unique r-digit identifier xsxs−1 · · · x2x1,
where xi∈[0,mi−1] for all 1≤i≤s. Two nodes are adjacent
if and only if their identifiers are different in one dimension,
i.e. the hamming distance between two identifiers is exactly
1.

Front. Comput. Sci.
3

(a) 2D torus. (b) Our hybrid design. (c) Random graph.

Fig. 1 Structured and random topologies are extremes. Between them, lies an example of our design, which is a compound graph with 2D-Torus as the
structured part and different types of random clusters. The solid nodes in each random cluster are chosen to connect with other random clusters.

GHC is more flexible than standard hypercube. Hyper-
cube can only accommodate 2i nodes, for i ≥ 0, while GHC
can accommodate any number of nodes via careful configu-
ration. For example, we can not construct a hypercube with
N = 24, but can derive several GHCs with different config-
urations since 24=2∗2∗2∗3=2∗3∗4=4∗6=3∗8. Among such
GHCs, there is a trade-off between the network diameter and
the node degree since larger node degree contributes to short-
er network diameter.

GHC is a representative structured topology, where the
construction and routing rules are deterministic. Further-
more, GHC is very flexible such that designers could con-
figure the network structure based on their demand.

2.2 Random regular graph

A random r-regular graph (r-RRG) is a graph selected from
Gn,r, which denotes the probability space of all r-regular
graphs on n vertices, where 3≤r<n and n×r is even [9]. Gen-
erally, a RRG has excellent topology characteristics. First, all
nodes have the same degree. Second, given r and n, a RRG
has a lower bound on the network diameter. That is, for the
same n, the network diameter of different RRGs is roughly
logr−1 n.

r-RRGs have excellent properties such as coloring and
Hamiltonian cycle. Most importantly, RRGs support the in-
cremental expansion properly by adding racks one by one
without changing the existing network too much. Because
of these outstanding characteristics, RRGs were introduced
into data center topologies.

2.3 Compound graph

Definition 1. Given two structured graphs G and G1, a level-
1 compound graph G(G1) is obtained by replacing each node
of G with a copy of G1, and then replacing each link of G by
a link, which connects two corresponding copies of G1 [3].

A compound graph is usually visualized as a node-link-
diagram using the nested box metaphor [10]. If the node de-
gree of G is equal to the number of nodes in G1, the resultant
graph is a complete compound graph. Otherwise, it is an
incomplete compound graph. In fact, higher level compound
graphs can be derived from low level ones, recursively. G(G1)
maintains the topological characteristic of G and G1. In other
words, the compound graph combines the advantages of both
parts efficiently. For this reason, the use of compound graphs
has become more important in recent years. For example, in
social network analysis large networks are transformed in a
so-called block model in order to cope with the huge amount
of data. From a graphtheoretical point of view these block
models are compound graphs [10]. Also, for DCNs, sever-
al proposals are designed based on the compound graph, e.g.
BCN [3], DCell [11], KCube [12], DCube [13] and so on.

3 Hybrid topology design

In this paper, we aim to combine the advantage of both struc-
tured topologies and random ones via designing a family of
hybrid topologies for data centers. Compound graphs (ei-
ther complete or incomplete) are introduced as the medium
between random and structured graphs. More precisely, we
combine the generalized hypercube with the random regular
graph to derive a hybrid topology called R3.

3.1 Overview of topologies

The existing wired DCNs topologies are mostly belong to t-
wo categories, i.e. random ones and structured ones. Struc-
tured topologies lack scalability and incremental expansion,
while the random ones suffer considerable routing overhead.
For example, the routing in hypercube is easy to implement
since the hamming distance between two node identifiers will
judge the existence of a direct link between any pair of nodes.

4
Compound Graph Based Hybrid Data Center Topologies

Table 1 Symbols and notations.
Term Definition

G A simple graph
N The total number of node in a graph

G(G1) A compound graph based on G and G1
mi Order of the ith dimension in GHC
∆ Maximum node degree in a simple graph

x′(G) Rdge chromatic number of G
T Total number of servers in R3
p Port count of each switch in R3
t Total switch that used in R3
α Number of switch ports that link with switches
β Number of switch ports that link with servers

When a hypercube based data center needs to be extended,
the data center has to double the amount of servers. For S-
cafida [6], the topology can be incrementally expanded by
adding any number of servers, but routing is very tough due
to large number of random links and the lack of topology in-
formation. In this paper, we pursue hybrid topologies for data
centers, which can combine the superiorities of both random
and structured topologies. The resultant hybrid topologies are
both random and structured at different viewpoints.

Available structured topologies: Tree, Hypercube, Gen-
eralized Hypercube, Torus, and other structured topologies
are permitted to appear at our hybrid topologies.

Available random topologies: Small-word network,
Scale-free network and Random regular graph of random
topologies are potential choices. Each random cluster plays
as a node in the selected structured topology.

Design principle of hybrid topologies: we first choose
one structured topology and single or multiple random
topologies, and then combine them together with the prin-
ciple of compound graph. In the resultant topology, the links
derived from structured graph is called structured links,
while the links inside a random clusters is called random
links. In our design, only one structured topology can be
used since it is the container of random clusters, but hetero-
geneous random clusters can be used. The incremental ex-
pansion and routing will be demonstrated later in Sections 4
and 6, respectively.

Without loss of generality, in our hybrid topologies, each
switch is viewed as an intelligent node, whose partial ports
interconnect with other switches, while the rest ports are used
to connect servers inside a rack.

3.2 R3: compound graph theory based hybrid topology

As depicted in Section 2, compound graph is a powerful
method to integrate two kinds of topologies while remaining
their superiorities. This motivates us to use the compound

Algorithm 1 Building Hybrid Topology, H
Require: Given a structured topology G, r denotes the number of

nodes in G. Let Ad jacent[r][r] denote the adjacent matrix of G
and Ri denote the random clusters.

1: Initialize each random cluster;
2: Let Link[x] count all links already connected to the xth node in

G;
3: Let Degree[x] be the degree of the xth node in G;
4: for i=0 to r do
5: for j=i to r do
6: if Ad jacent[i][j]==1 and Link[a]<Degree[a], a=i, j

then
7: add a link between ith and jth random clusters;
8: Link[i]++;
9: Link[j]++;

10: return The hybrid topology H.

graph theory to construct our hybrid topologies. Differen-
t combinations of structured and random topologies result in
different hybrid topologies. This will enlarge the design s-
pace and increase the design flexibility. In this way, our hy-
brid topologies enable designers to construct their data center
networks on demand.

To construct a hybrid topology correctly based on the com-
pound graph theory, three constraints must be satisfied.
Constraint 1: all random clusters must be interconnected via
a structured topology.
Constraint 2: the number of random clusters must equal to
the number of chosen nodes in the structured topology G.
Constraint 3: the lower bound on the amount of nodes in
each random cluster can’t be less than the maximum degree
plus one in the structured topology.

We describe the basic process of building a hybrid topol-
ogy in Algorithm 1. In Algorithm 1, given the number of
links that have been linked to each node in G, the adjacent
matrix determine whether current nodes need to be linked. If
ith and jth random clusters are connected, a link will be added
to connect one random node in each cluster. If the number of
nodes in a random cluster is less than the degree of node in
the structured topology then the degree of some nodes will be
increased by more than one. Each proposed hybrid topology
is the generalization of the involved random and structured
topologies under specific settings. This design methodology
has two extreme cases. If the random clusters have only one
node, the resultant topology is just the structured graph we
used (depicted in Fig.1(a)). If the structured graph is just a
single node, as shown in Fig.1(c), then the hybrid topologies
degrade into a fully random cluster.

Fig.1(b) depicts an example of hybrid topology construct-
ed with the Torus and random topologies. If each random

Front. Comput. Sci.
5

Node

RRGGHC

000 000

000 000 000 000

010

010

010

010 010

010
010

010

001
001

001 001

001

001

001
001

011

011

011 011

011 011

011

011

00 01 02 03

10
11 12 13

000 000Scr

101

Dst

100

Fig. 2 A 2 × 4 R3 topology.

cluster is viewed as a node in Torus, then the topology is
structured, and hence easy-routing. While, in each random
cluster, the topology is random and incremental expandable.
In our hybrid topology, different random clusters are allowed
to be embedded; meanwhile, it is not necessary that the
amount of nodes in such random clusters are the same. That
is, our methodology can derive all hybrid topologies that lie
between structured and random topologies.

As aforementioned, the vast design space results in vari-
able hybrid topologies with diverse randomness. To simplify
the presentation, we focus on a representative hybrid topolo-
gy, called R3. R3 employs the generalized hypercube as its
structured part and the random regular graph as the unit of
random clusters. Generalized hypercube and random regu-
lar graph are two representative topologies, which are widely
used for designing network structures for data centers.

Definition 2. R3(G(ms,ms−1, · · · ,m1), r-RRGs) denotes a
kind of hybrid topologies, each of which is the compound
graph of a random regular graph r-RRG and a GHC, whose
dimensions are ms,ms−1, · · · ,m1, respectively.

Definition 3. In a R3 topology, the selected nodes from each
random cluster for linking with other random clusters are
called Boundary Nodes.

Therefore, according to Definitions 2 and 3, a R3 topology
contains number of ms∗mr−1∗ · · · ∗m1 RRGs and the amount
of boundary nodes is

∑
(mi−1), where 1<i<s. Fig.2 depict-

s a 2×4 dimension topology, where eight random cluster-
s of 3-RRGs are embedded and each cluster accommodates
8 nodes. These structured links across random clusters for-
m a 2×4 generalized hypercube. Every cluster is assigned a
two-dimensional identifier(the two digit red number in Fig.2).
Similarly, each node in a random cluster also owns its iden-
tifier, the allocation rules will be discussed later in Section 4.
All boundary nodes are chosen randomly, while, the amount
of nodes in a random cluster can be an arbitrary value, which

is not less than the node degree in GHCs. In R3, all parame-
ters are adjustable. Due to the flexibility of parameter setting,
R3s with different scales can be easily built according to its
definition.

3.3 Deployment strategy for hybrid based data center

To put the hybrid topologies into real deployment, we investi-
gate that both top-down wiring strategy and down-top wiring
strategy are feasible.

The top-down deployment strategy mainly includes two
steps. At the first step, we build the structured topology since
it is the main skeleton of our hybrid topology. Having select-
ed an appropriate structured topology, we deploy the bound-
ary nodes of each cluster and interconnect these boundary
nodes with structured links. When all structured links have
been cabled, the first step will be terminated. At the second
step, we fill the random clusters via adding nodes into the
clusters in a way the random topologies requires. In this way,
the hybrid topology will be constructed successfully.

Unlike the top-down strategy, the down-top deploymen-
t strategy establishes the random clusters at the first step so
that all random blocks are prepared for later interconnection.
However, how to establish the random clusters depends on
which topology the designer utilized. Note that the number
of random clusters must be equal to the number of nodes in
the structured topology we employed according to the com-
pound graph theory. At the second step, we chose the bound-
ary nodes from each random cluster and interconnect them
together via structured links in a way the structured topology
requires. When all links have been cabled, the construction
process will be terminated.

4 Efficient routing methods of R3

Routing in our hybrid topologies needs a dedicated design
method because of the coexistence of random links and struc-
tured links. In our hybrid topologies, the major challenge of
routing comes from the embedded random clusters. In ran-
dom topologies, like Scafida or Jellyfish, the shortest routing
path between any pair of nodes can be decided only by Di-
jkstra like methods, which incur considerable searching cost
in large-scale data centers. In structured topologies, the topo-
logical characteristics can significantly ease the computation
process of the shortest routing path.

Unlike BCube, where regularity and symmetry of the
topology supports fast routing under differen flow pattern-

6
Compound Graph Based Hybrid Data Center Topologies

s [14], the routing in R3, however, turns to be complicated
in each of our hybrid topologies due to the following two
challenges. First, the unstructured topology of each random
cluster denies the possibility to improve the efficiency of ex-
isting routing algorithms. Second, the associated nodes of
each structured links can’t be located precisely since they are
chosen randomly. In this paper, we focus on addressing the
second challenging issue. It is clear that the obstacle of rout-
ing results from all of random nodes. We thus regularize
those random nodes by coloring all of structured links and
make routing just like in a totally structured topology.

Definition 4. An edge coloring of a graph is an assignment of
colors to the edges of the graph so that no two adjacent edges
have the same color. The least amount of employed colors is
called the edge chromatic number, denoted as x′(G) [15].

Theorem 1. Let ∆ denote the maximum node degree in a
simple graph G, where ∆≤x′(G)≤∆+1. If x′(G)=∆, the graph
is called class 1 graph, else, class 2 graph [15].

Theorem 2. [15] Let Kn be the n-regular graph, then

x′(G) =
{

n − 1 i f n is oven
n i f n is odd . (1)

Theorems 1 and 2 have been proved in [15]. These theo-
rems bring us an insight to identify boundary nodes in each
random cluster.
Observation: Structured topologies, e.g., Ring, Torus, Hy-
percube, Generalized Hypercube and Cayley Graph are all of
structured graphs.

Coupled with Theorem 1 and Theorem 2, the observation
manifest that structured topologies that used in today’s DCNs
are colorable. Fig.2 depicted the color result on R3(G(2, 4, 3-
RRGs). Constraint 3 in Section 2 must be meet to ensure
a successful edge coloring. Fig.2 depicts the coloring result
on R3(G(2, 4, 3-RRGs). To enable the success of edge col-
oring, the proposed Constraint 3 in Section 2 must be sat-
isfied. After coloring each structured link, we assign each
boundary node an inner-identifier according to the color of
associated link so that the nodes, which linked by the same
link, will have the same inner-identifier. In this novel way,
the random cluster level paths will be calculated easily. So,
the used inner-identifier of boundary nodes can significantly
reduce the routing complexity.

4.1 Edge coloring based identifier allocation

To efficiently enable the routing, an identifier is usually in-
troduced to identify each node in existing DCNs. In our hy-

brid topologies, the identifier consists of two parts. The inter-
identifier contains the construction information of structured
topology, while the inner-identifier locates nodes in each ran-
dom cluster.

The inter-identifier is determined by the behind structured
topology. For example, if the structured topology is a Tesser-
act (4-dimension hypercube) that accommodates 8 nodes,
then a three binary digit identifier can identify each node. If
the structured topology is a 3∗4∗5 GHC, then a three digit i-
dentifier from 000 to 234 will work. Based on the rules how
the structured topologies are built, we can always design an
identifier system which we can refer to find their neighbors,
thus result in convenience in routing. So, the inter-identifier
not only identifies the random cluster each node resides in,
but also eases the design of routing scheme at the level of
structured topology.

The inner-identifier is the most challenging part since
boundary nodes are chosen randomly. In the edge coloring
theory, whether a graph is class 1 is a typical NP-complete
problem, which cannot be solved in polynomial time. We
employ DSATUR [16], the best known heuristic algorithm in
this area, to approximate the optimal solution. Such an algo-
rithm usually generates multiple coloring strategies, one of
which will be randomly selected. Basically, each color iden-
tifies a specific inner-identifier. As shown in Fig. 2, the struc-
tured links are colored with four colors, i.e. black, purple,
orange and blackish green, which represent inner-identifier
000, 011, 010 and 001, respectively. Furthermore, the inner-
identifier of each boundary node in a random cluster is as-
signed with the identifier of the associated structured link. As
shown in Fig.2, all boundary nodes are assigned the inner-
identifier with 000, 011, 010 and 001, respectively. As for
the rest nodes in the random cluster, we calculate the inner-
identifier interval according to the binary system. For exam-
ple, if there are 9 nodes in a random cluster, a 4-digit binary
range from 0000 to 1000 will identify all of them. Then the
identifiers in the interval, except those used as boundary n-
odes, are assigned to the non-boundary nodes randomly.

4.2 Identifier-based routing algorithm

According to allocated identifiers of all nodes, especially
those boundary nodes, we derive a routing algorithm for our
hybrid topologies. Generally, the transmission of data flows
between any pair of nodes can be usually divided into a se-
ries of inter-cluster and intra-cluster routing. Such two kinds
of routing are totally different because of the lack of struc-
tured links inside each random cluster. We can distinguish

Front. Comput. Sci.
7

Algorithm 2 Routing in hybrid topologies
Require: The Hybrid topology, H; The source node src, and its

identifier iden-src; The destination node dst, and its identifi-
er iden-dst; The path number k; the number of digit in inter-
identifier x.

1: Coloring the links and allocate identifiers;
2: Let tem be a integer with default value 0;
3: Let iden1 and iden2 be a identifier respectively;
4: if GetInterIden(iden-src,x) == GetInterIden(iden-dst,x) then
5: path = kStar(iden-src,iden-dst,k);
6: else
7: Get the inter-identifier of clusters, denoted as inter-iden;
8: Get structured links needed, denoted as structured;
9: Get color of links needed;

10: Get inner-identifier of boundary nodes, denote as iden-
color;

11: while tem < iden-color.size do
12: iden1←− iden-src;
13: iden2←− inter-iden[tem]+iden-color[tem];
14: path += Dijkstra(iden1,iden2);
15: path += inter-iden[tem]);
16: tem++;
17: path += Dijkstra(iden2, dst);
18: return The routing path path.
19: function GetInterIden(iden, x)
20: for i=1 to x do
21: inter-iden += coor[i];

return inter-iden.

such two kinds of routing just according to the introduced i-
dentifier. From the global viewpoint, given a pair of nodes,
if their inter-identifiers are the same, they need to involve the
intra-cluster routing method, otherwise, the inter-cluster rout-
ing method should be employed.

The intra-cluster routing is just the same as routing in a
random graph like Jellyfish [5] or Scafida [6]. But in our
cases, routing can be simpler since the number of nodes in
our random cluster is much less than that of Jellyfish or S-
cafida. Typically, we employ the shortest k-path algorithm
to search the paths between any pair of nodes, furthermore,
ECMP protocol can be used to control data transmission and
avoid congestion.

The inter-cluster routing aims at finding the shortest path
from the source to destination on the random cluster level. To
be specific, we need to determine the relay random clusters
and all boundary nodes on the way. Inter-cluster routing con-
sists of two steps. First, calculating the relay random clusters
from the source cluster, where the source node locates, to the
destination cluster, where the destination node locates. S-
ince the inter-identifiers contain the topology information of
the structured graph, which the hybrid topology utilizes, the
relay random clusters can be easily derived from the inter-
identifiers of source node and destination node. Second, de-

termining the boundary nodes of all related random clusters
that have been derived from the first step. According to the
colors of structured links we have allocated in Section 4.1,
the inner-identifiers of each boundary node along the random
cluster level path will be gained. This work is straightfor-
ward since the inner-identifiers of the two endpoints, which
connects with the same structured link, share the same iden-
tifier with the colored link. In this special way, the random
cluster level path can be derived based on the structured link
colors and the identifier system we have established before.

From the global viewpoint, given a pair of source node
and destination node, first of all, the routing algorithm judges
whether they belong to the same random cluster according to
their inter-identifiers. If yes, then the intra-cluster routing al-
gorithm will be employed to find the path. On the contrary,
then inter-cluster routing will provide the random cluster lev-
el path; hence, all relay random clusters and relay boundary
nodes are determined. Then, the path need to be specified
at a finer level. That is, each relay random cluster along the
random cluster level path will employ intra-cluster routing
to find the relay nodes inside them. With the relay nodes
and links inside each relay random cluster and the structured
links added into the path, the whole routing process is accom-
plished.

As explained in Algorithm 2, given two nodes, we first
judge whether they belong to the same random cluster ac-
cording to their inter-identifiers. If it is true, K∗ Algorith-
m [17], the most effective heuristic search algorithm so far,
is adopted to search k shortest routing paths. If they resides
in different random clusters, Algorithm 2 identifies the struc-
tured links and their colors, and find those boundary nodes in
each relay cluster. We then add links to the path iteratively
by invoking the Dijkstra algorithm in each cluster. In Fig.2,
a source node with the red color in the cluster 00 needs to
communicate with a destination node with the yellow col-
or in the cluster 13. Their identifier are given as 00101 and
13100, respectively. Obviously, they belong to different ran-
dom clusters, and there exist two routing paths between clus-
ters 00 and 13, i.e. 00−→03−→13 and 00−→10−→13. We
use the first path as an example, 03 is a relay cluster on the
random cluster level. The purple and orange links associated
with inner-identifiers 011 and 010 are two inter-cluster links.
Furthermore, the boundary nodes can be located, i.e. 00001
in cluster 00, 03011 and 03010 in cluster 03, and 13010 in
13 cluster. Then, the Dijkstra algorithm is utilized to derive
a path of added links inside each random cluster, e.g., the
shortest path from 00101 to 00011 in cluster 00, from 03011
to 3010 in cluster 03, and from 13010 to 13100 in cluster 13.

8
Compound Graph Based Hybrid Data Center Topologies

1000 2000 3000 4000 5000 6000
3.6

3.8

4

4.2

The number of servers

A
ve

ra
ge

 P
at

h
L

en
gt

h

APL of R3

(a) The APL of R3 when T varies.

7 14 15 20 25

3.7

3.8

3.9

4

Port count link with servers
A

ve
ra

ge
 P

at
h

L
en

gt
h

APL of R3

(b) The APL of R3 when β varies.

7 14 15 20 25
50

100

150

200

250

300

Port count link with servers

S
w

it
ch

 a
m

ou
nt

APL of R3

(c) The number of switches in R3 when β varies.

Fig. 3 The APL of R3 with different parameter setting.

In this way, any pair of nodes can finally achieve the routing
path inside our hybrid topologies.

When nodes are added or eliminated from R3, the routing
tables need to be updated. Note that, unlike other topologies
where addition or deletion of a node may affect the global
routing, R3 suffers the least since it limits the influence of
topology alteration into the specific random cluster. Here is
an example, for Fat-Tree, if one of the core switches break-
downs, then the routing tables of all nodes that belong to the
subtree rooted from the failed switch will be updated to suit
the new topology. On the contrary, when 00001 fails in Fig.2,
only those nodes of 00 cluster may need to update routing ta-
ble, thus will never impact nodes in other random clusters.

5 Topology optimization

Given the number of servers in a data center, a typical ques-
tion is how to allocate the ports of each switch when estab-
lishing the data center networking structure. That is, how
many ports each switch should be allocated to connect with
servers? Note that the remained ports of each switch are u-
tilized to form a networking structure among all switches.
There lies a trade-off between the amount of switches and the
network diameter, since the increasing number of switches
leads to decreased network diameter at the cost of incurring
more investment [18]. Meanwhile, the ratio of node degree to
the network diameter is a classical problem for topology de-
sign. How much randomness is optimal for both routing and
networking? In the design of our hybrid topologies, more
structured links can ease the routing. On the contrary, net-
working can benefit from more randomness, since random
topologies can naturally support the incremental expansion
with low diameter. Therefore, the proposed hybrid topolo-
gies, i.e., R3, need further optimization.

5.1 Related factors

Given the number of servers and that of ports at each switch,
how many ports each switch should be allocated to connect
with servers and other switches, respectively, so as to realize
the minimum APL with an acceptable amount of switches?
In R3, to minimize average path length, we must concern at
least three impact factors. As a hybrid topology combine r-
RRGs and GHC via the compound graph theory, the diam-
eter of R3 is decided by three factors. That is the dimen-
sion of GHC, m1,m2, · · · ,ms, the node degree of RRGs, r,
and the number of nodes in each RRG, n1, n2, · · · , nt, where
N=ms∗ms−1∗ · · · ∗m1. The dimension influences the redun-
dancy of routing path and the amount of structured links in
routing paths. Moreover, it dominates the hamming distance
between any pair of nodes, x and y, in terms of number of
hops between them [8]. The other two factors determine
the number of relay nodes inside each cluster along the path.
APL is a network level measurement, so we calculate it and
integrate such factors to reveal their influence on the network
diameter.

5.2 Optimization strategy of topologies

In our hybrid topology, each routing path consists of two part-
s, the structured links and some random link in random clus-
ters on the path.

Theorem 3. In R3, let APLghc, APLrrg, and APLr3 denote the
average length of routing in GHC, RRGs and R3, respective-
ly. Then we have APLr3=APLghc+(APLghc+1)∗APLrrg.

Proof. In such a routing path, there exist APLghc struc-
tured links, and APLghc+1 random clusters among which
APLghc−1 random clusters are relay. In each of such clus-
ters, the path length is APLrrg on average. Thus, Theorem 3
is proved. �

Front. Comput. Sci.
9

Theorem 4. For a G(ms,ms−1, · · · ,m1),
N=ms∗ms−1∗ · · · ∗m1 denotes the number of nodes, xl

denotes the number of node pairs, each of which exhibits the
distance of l. We then have

xl=(N/2)
s−l+1∑
i1=1
· · ·

s−l+ j∑
i j= j
· · ·

s∑
il=l

[(mi1−1) · · · (mil−1)]

APLghc=(2
s∑

l=1
l∗xl)/(N(N−1)

Proof. Consider a node A, denoted as ysys−1 · · · y1, in this
GHC, If another node B is l hops away from node A, the
coordinates just differ in l dimensions Thus, APLghc can be
calculated naturally based on xl. Thus Theorem 4 is proved.
�

Note that different structures exhibit varied APLrrg when
the node degree and number of nodes do not change [9]. The
default value of APLrrg is set to logr−1 n, where n and r denote
the amount of nodes and the degree of each node, respective-
ly. Theorems 3 and 4 derive a model of the network diameter
for R3. We consider a special case that n1=n2= · · ·=nt=n.
We build this optimal model with the total server number T ,
the port count of each switch p as input. α and β denote the
number of ports each switch allocates to connect with other
switches and servers, respectively. Let t ∈ [1,T] be the total
number of used switches. The topology optimization can be
modeled as follows:

min APLr3 (2)

s.t. 
T ≤ s ∗ β
t ≤ n ∗∏mi∑s

i=1(mi − 1)+1 ≤ n
2 ≤ α+β ≤ p
1 ≤ r ≤ α−1

(3)

In this model, the minimum APL is searched in the domain
of feasible solution with five constraints satisfied. The first
inequality promises that the number of servers that our topol-
ogy can accommodate is not less than the input T . The sec-
ond inequality constraints the number of switches the topol-
ogy can accommodate is more than the number of switches
that actually used. The third inequality guarantees that our
routing algorithm can be built successfully. While, the last
constraint reveals that each switch should leave at least one
port for structured links. In fact, this model is a nonlinear
integer programming problem, which is NP-hard. According
to the gradient optimal algorithm, we utilize an associated
tool (ModelCenter [19]) to search the minimum result. Fig.
3 (a) shows that the optimized APL of R3 increases when
T varies from 1000 to 6000. This result is reasonable be-
cause more servers need to be accommodated. It, however,

01

00 03

02

10

1

0 3

2

01

00 03

02

10

11

(a) (b) (c)

Fig. 4 A example of expansion by adding extra clusters.

fluctuates at 4500 and 5500 because there are more switch-
es and less ports link with servers in these two cases. For
this reason, the topology exhibits lower APL at the cost of
increasing the investment due to more switches. The gradient
optimal algorithm searches towards the fastest decline direc-
tion and find the minimal value. Fig.3(b) indicates that, giv-
en T=2000 and p= 48, the search process terminates when
β=15, and the minimum APL is 3.71. Furthermore, we eval-
uate the amount of switches after APL is optimized. Fig.3(b)
and Fig.3(c) demonstrate the marginal effect around the ex-
treme point. When s=62, APL=3.78 is a little bit higher than
3.71. However, 138 switches are required so as to reach the
extreme point. This will double the investment and obviously
not cost-effective. So, whether the minimum APL is the best
choice depends on designers.

6 Incremental expansion of topology

Incremental expansion is essential to data centers since they
are usually required to accommodate arbitrary number of
servers on demand. For data centers based on our hybrid
topologies, two methods can be employed to realize the in-
cremental expansion, i.e. expansion by adding nodes in an
existing random cluster and expansion by inserting a new ran-
dom cluster.

6.1 Expansion within an existing random cluster

Recall that random topologies like RRG and scale-free net-
work support the incremental expansion naturally, new nodes
can be added one by one. For RRG, when a new node is
added in, several existing nodes break up their links and con-
nect to the new one [5]. For a scale-free network, according
to its generation algorithm, a new node will be linked with
m existing nodes, which are selected based on the preferen-
tial attachment principle [6]. To keep from the unbalance and
bottleneck, those random clusters with the minimum num-
ber of nodes are chosen to host new nodes. With more and
more nodes are added into those selected clusters, the length

10
Compound Graph Based Hybrid Data Center Topologies

of inner-identifier needs to be increased to maintain consis-
tency in the whole network. In other words, the length of in
inner-identifier is decided by the maximum number of node
in random clusters. In Fig.2, the number of nodes in each
cluster is no more than 8, a 3-digit inner-identifier is feasible.
Once a new node is added into cluster 00, the maximum num-
ber of node is 9. Thus, the existing 3-digit inner-identifier is
replaced by a 4-digit inner-identifier. That is, existing inner-
identifiers are updated by adding a new digit in the front of
them. Theoretically, the number of node that each random
cluster can accommodate is unlimited. However, if the ran-
dom clusters have too many nodes, the structured links may
be bandwidth bottleneck since these random clusters are in-
terconnected with structured links only.

6.2 Expansion by extra random cluster

When all random clusters in the existing topology are satu-
rated, a new cluster is required to accommodate upcoming
new servers. Existing structured topologies are usually ex-
tended level by level, we propose a novel expansion strategy
to implement the incremental expansion. More precisely, we
expand an existing hybrid topology just like the way hyper-
cube does, but in an incremental way.

Definition 5. In a n-dimensional hypercube, a n−1-
dimensional coordinate system can be established to identify
each node according to its building rule. We call a pair of
nodes are corresponding nodes if their coordinates are dif-
ferent only at the first digit.

As shown in Fig.4(b), a new cluster 10 and an existing
cluster 00 are called a pair of corresponding clusters. Algo-
rithm 3 depicts a framework of cluster level expansion. When
we need to add a new cluster, a function COOREXTEND
judges whether the coordinate system requires more digits,
then a function ADDREGULARLINK(G,New[i]) adds struc-
tured links to the new cluster, according to G′s construc-
tion rules. Then those unnecessary links are deleted by a
DELETE function. In ADDRESTLINK(G, New[i]), those
links, whose destination endpoints do not exist yet are linked
to New[i]’s corresponding clusters to ensure the partial regu-
larity of G. In this especial way, structured topologies can be
incrementally expanded while remaining their fundamental
characteristics via using corresponding clusters. We depict
an example in Fig.4(a), when a new cluster wants to add into
a quadrangle, the coordinate of existing clusters are increased
one digit. The new cluster is identified as 10, whose corre-
sponding cluster is 00. Thus, cluster 10 is linked with cluster

Algorithm 3 Expansion with Extra Random Clusters, G
Require: The regular topology, G; The amount of new random

clusters, n.
1: Let New[n] be those n new clusters that will be added;
2: for i=0 to n do
3: if COOREXTEND(G) then
4: Each inter-identifier is added a digit in the front;
5: Assign prefix to New[i];
6: ADDREGULARLINK(G, New[i]);
7: DELETE(G, New[i]);
8: ADDRESTLINK(G, New[i]);
9: return The new structured topology G.

10: function COOREXTEND(G)
11: if r + 1>the amount the existing pre f ix can identi f y then
12: Return True;
13: else
14: Return False;
15: function DELETE(G, New)
16: Let neighbor be the neighbors of New;
17: Let corespd be the corresponding node of New;
18: for j=0 to New.neighboramount do
19: if corespd linked with neighbor[j] then
20: Delete this link;

return G;
21: function ADDREGULARLINK(G, New)
22: Let corespd be the corresponding node of New;
23: Add link from New to corespd;
24: Calculate New′s neighbors denoted as reg;
25: for s=0 to reg.size do
26: Add link from New to reg[s];

return G;
27: function ADDRESTLINK(G, New)
28: Calculate New′s rest neighbors denoted as rest;
29: Let corespd[e] be the corresponding node of rest[e];
30: for a=0 to rest.size do
31: Add link from New to corespd[a];

return G;

00. According to the quadrangle rule, cluster 10 should con-
nect with clusters 11 and 13. Such two clusters, however,
do not exist yet; hence, cluster 10 connects with the corre-
sponding clusters of 11 and 13, i.e., 01 and 03 instead. When
other three clusters arrive, we just repeat these operations and
finally extend the quadrangle to a cube.

7 Performance evaluation

In this section, we simulate our hybrid topologies to evaluate
the routing flexibility, cabling cost and network performance.
Typically, we compare R3 with a fully structured GHC and
a fully random Jellyfish topology, respectively. Note that we
report all the average result over 100 rounds of simulations
for each performance metric.

Front. Comput. Sci.
11

200 300 400 500 600 700 800 900

1

2

3

4

Switch amount

T
im

e
us

ed
 (

s)

Time of coloring
Time of searching

(a) Time consumption of routing and coloring.

200 300 400 500 600 700 800 900

1

2

3

4

5

6

7

Switch amount

T
im

e
us

ed
 (

s)

Time of R3
Time of Dijkstra

(b) Our routing method and Dijkstra algorithm.

200 300 400 500 600 700 800 900

10

20

30

40

50

Switch amount

T
im

e
us

ed
 (

s)

Time of R3
Time of 8−RGG
Time of 9−RGG

(c) Time consumption of R3 and Jellyfish.

Fig. 5 Time consumption of routing process.

7.1 Routing flexibility

Building routing table in a large-scale data center is a tough
work for those fully or partially random DCNs, due to huge
number of links and potential paths between any pair of
switches. To measure the time consumption due to find the
shortest path between each switch pair, we conduct a series
of experiments with different settings of switches.

We constructs R3 with different amount of switches, rang-
ing from 200 to 900. In each of these R3s, 20 switches for-
m a 8-RRG random cluster, and such random clusters are
connected via structured links. Since our routing method is
coloring-based, the time consumption of routing consists of
two parts, i.e., the coloring time and the routing time. Dur-
ing the coloring period, each structured link is colored with
one color to record the nodes used to link each pair of ran-
dom clusters. Additionally, the process of finding the short-
est paths between every switch pairs also brings additional
time consumption. As demonstrated in Fig.5(a), compared
with the coloring time, the routing time contributes most of
the total time. Fig.5(b) reports that our routing method out-
performs the traditional Dijkstra algorithm in R3. More pre-
cisely, the coloring-based routing algorithm reduces half of
time consumption compared to the Dijkstra algorithm on av-
erage. The reason is that, compared with traditional Dijkstra
algorithm which is time-consuming, the coloring-based rout-
ing algorithm limits the Dijkstra algorithm inside each ran-
dom cluster only. Furthermore, as reported in Fig.5(c), R3
consumes much less time compared to the Jellyfish topology.
Note that the building clusters of our hybrid R3 topology are
8-RRGs. After introducing structured links into the topolo-
gy, the total number of links in R3 is between that of 8-RRG
Jellyfish and that of 9-RRG Jellyfish. The evaluation result,
however, demonstrates that the routing time of R3 is less than
that of 8-RRG and 9-RRG Jellyfish in many times.

Additionally, the routing flexibility is important in DCNs
where failures of commodity devices are very common. In

R3, once a switch breaks down, the coloring-based routing
algorithm will immediately derive another available path and
update involved routing table, dynamically.

7.2 Cabling cost

In DCNs, huge number of links are utilized to interconnect
large-scale switches and servers to form a designed topolo-
gy. For each of our hybrid topologies, those long-distance
random links will significantly increase the cabling cost and
complexity. In this section, we calculate the total length of
all cables in R3 and Jellyfish to evaluate the cabling cost.

Racks in a data center are placed as a matrix for cooling
and maintaining purpose. To minimize the total length of al-
l cables, we suppose that racks are placed as a quadrate or
quadrate-like structure. Given the amount of switches, we
calculate the length and width according to the quadrate-like
location strategy first. Then, we calculate the total length of
all links via the Pythagorean Theorem. Meanwhile, we as-
sume that links between racks are underground distribution
such that the geographical distance can be calculated as the
link distance.

Reasonably, we use the distance between any pair of racks
as the metric of cabling cost. Fig.6(a) depicts the cabling cost
of our hybrid topology compared to that of Jellyfish. For fair-
ness, we compare R3 with 8-RRG Jellyfish and 9-RRG based
Jellyfish, respectively. R3 causes much less cabling cost than
8-RRG as well as 9-RRG based Jellyfish. This result is rea-
sonable since with the increasing number of switches, more
remote links are introduced into Jellyfish. The distance be-
tween any pair of switches in R3, however, is predictable and
less than that in Jellyfish.

7.3 Network performance

We compare R3 with two extreme topologies, the general-
ized hypercube and Jellyfish, which are representative ones
of fully structured and random topologies, respectively. To

12
Compound Graph Based Hybrid Data Center Topologies

200 400 600 800

0.5

1

1.5

2

2.5

x 10
6

Switch amount

C
ab

lin
g

C
os

t

Cost of R3
Cost of 8−RGG
Cost of 9−RGG

(a) Cabling cost comparison with Jellyfish.

8 36 96 200 360
0

2000

4000

6000

Switch number

N
et

w
or

k
or

de
r

Order of RRG and R3
Order of GHC

(b) Network order.

8 36 96 200 360
0

0.5

1

1.5

2
x 10

5

Switch number

A
ll

to
 a

ll
th

ro
ug

hp
ut

 (
M

bp
s)

Throughput of RRG
Throughput of R3
Throughput of GHC

(c) All to all throughput.

Fig. 6 Performance comparison between R3, RRG(Jellyfish) and GHC.

evaluate their performance, we vary the amount of 24-ports
switches from n=8 to 360. We calculate the maximal amoun-
t of servers they can accommodate, i.e., network order, and
evaluate the throughput under all-to-all traffic. At the best
case, each switch inside a random cluster has a structured
edge to connect with another switch in other clusters. So, R3
has the same network order with RRG. But for GHCs, the
network order depends on its dimensions. Consider n=200 as
an example and there is 200=2*2*2*5*5. Each switch should
reserve at least 11 ports for linking with other switches, the
remainder 13 ports link with servers. Consequently, the net-
work order is at most 200∗13=2600. To construct the densest
R3, we use 5*5 GHC and 7-RRG, which lead to a hybrid
topology, which can accommodate 16∗200=3200 servers and
the maximal node degree is 8. For fairness, a 8-degree Jelly-
fish is built as a reference. Fig.6(b) depicts the resulting net-
work order. It is clear that both R3 and Jellyfish can accom-
modate large number of servers. This is reasonable because
both R3 and Jellyfish have larger design space than GHC.

Indeed, the throughput of DCNs is affected by not only
the topology, but also the bandwidth allocation strategy [20]
[21].For a given DCN, different bandwidth allocation strate-
gies result in different network performance. In this paper,
to comprehensively reveal the impact of topologies, our ex-
periments focus on the topologies under the same bandwidth
allocation strategy. We first verify the network performance
of R3 under different amount of switches, and then compare
the network throughput with Jellyfish and GHC under all-to-
all traffics. Typically, the bandwidth of each link is set to be
1000Mbps, and the data rate of each server is 100kbps. We
monitor each flow via the flow monitor function in NS3, and
obtain the total throughput by summing up the data rate of
each flow. Fig.6(c) plots that the network throughput of R3
is always a little bit less than that of Jellyfish but much more
than that of GHC. Thus R3 integrates the advantages of both
GHC and Jellyfish while abandons their weakness.

8 Discussion

In this paper, we investigate a family of hybrid topologies,
which combine structured topologies with random topologies
seamlessly via the compound graph. To fully understand the
hybrid designing methodology, we discuss the following is-
sues further.

Rethinking the routing algorithm. An edge-coloring
based routing algorithm in Section 4.2 is designed for fast
and accurate routing tables. In effect, such a routing algo-
rithm is propagable since Theorem 1 guarantees that at most
∆+1 kind of colors are sufficient to color all edges. Namely,
the novel routing algorithm works well even though R3 se-
lects different structured topology. Let m denotes the average
number of nodes in random clusters, |E| and |V | denote the
number of edges and vertex in the chosen structured topol-
ogy, respectively. Then the time complexity of our routing
algorithm is O(|E|∗|V |))+O(|V |∗m2), where O(|E|∗|V |)) is the
time complexity of coloring [22] and O(|V |∗m2) is the time
complexity of routing inner random clusters.

Dedicated integer programming model. Note that, the
integer programming model in Section 5.2 is used to find
the best parameter setting of a given structured topology, the
number of servers and amount of ports per switch. So, differ-
ent structured topologies result in different integer program-
ming models to describe the hybrid topologies precisely.

Incremental expansion of our hybrid topologies. As for
the expansion issues for hybrid topologies, we propose two
appropriate methods, i.e., the expansion within an existing
random cluster and the expansion by adding an extra ran-
dom cluster in Section 6. The new added servers ought to
be allocated into the existing random clusters evenly other
than embed them into one or several clusters in bathes. Be-
sides, which expansion strategy should be employed remains
an open problem for the designers so that the flexibility and

Front. Comput. Sci.
13

design space will be guaranteed.
The experiment methodology. Our experiments concen-

trate on evaluating the performance of R3, RRG and GHC
since R3 is constructed via combining RRG and GHC seam-
lessly. Different selections of structured and random topolo-
gies will definitely result in different performance. The per-
formance of each of other hybrid topologies is similar with
R3, i.e., its performance falls between that of used structured
topology and that of the utilized random topology. Thus, the
major motivation of our experiment is to prove that the pro-
posed hybrid designing methodology combines the benefit-
s of both structured and random topologies together while
avoid their weakness successfully. Additionally, we leave the
comparison with other topologies as one of our future work.

Constraints of hybrid DCNs. Besides the aforemen-
tioned benefits, the proposed hybrid DCNs also face a few
potential limitations. First of all, three constraints must be
satisfied to achieve a hybrid topology as elaborated in Section
3.2, i.e., the structured and random topologies need careful s-
election. Second, if there exist too many nodes in a random
cluster, the boundary nodes of that cluster may be overload-
ed and thus may result in congestion. In other words, the
designer must concern the capacity of each boundary node
when building or upgrading the hybrid data center network.
At last, even though there are parallel paths between any pair
of nodes, large number of long-distance flows may lead to
bottleneck at those structured links. Thus, more bandwidth
should be allocated to these structured links.

9 Related work

Existing DCNs networking topologies can be roughly clas-
sified into five categories, i.e. switch-centric data centers,
server-centric data centers, modular data centers, random da-
ta centers and wireless data centers.

In switch-centric data centers, routing and interconnection
are realized by switches, which form dedicated structured
topology, such as generalized hypercube, Torus, compound
graph, tree and so on. Fat-Tree [1], F10 [23], VL2 [2] belong
to this category. With the development of optical communica-
tion, optical packaging technology is introduced into switch-
centric DCNs [24]. These optical links improve bandwidth
greatly, but the associated control strategy becomes complex.

Note that switches and routers are expensive, while com-
modity server and mini-switch are cheap; hence, it is cost-
saving to build a DCN just with servers and mini-switches.
In server-centric data centers, routing and interconnection are

realized by servers since servers are competent to cache and
forward flows. Usually, server-centric DCNs are recursively
defined and extended level by level. BCube [25], DCell [11]
are all server-centric DCNs, but their network capacity are
limited by the count of NIC ports at each server.

To ease the development of data centers, module has re-
placed racks as the basic building block of large-scale data
centers. These modules integrate the power system, cool sys-
tem and thousand servers inside a container. By further inter-
connecting a given number of such modules via a dedicated
topology, an efficient, controllable, and elastic data center can
be built. MDCube [26] and uFix [27] are two representative
proposals. They utilize the remaining NICs at servers to in-
terconnect those modules systematically.

For random DCNs, random links interconnect remote n-
odes together, hence, they shorten the network diameter. Typ-
ically, Jellyfish [5] and Scafida [6] are proposed based on the
random regular graph and scale-free network, respectively.
The advantage of random DCN is the characteristic of incre-
mental expansion, which means that we can add servers one
by one other than level by level. Routing in such random
topologies, however, is difficult and time-consuming.

Recently, wireless communication technologies are intro-
duced into DCNs. Therefore, the cabling cost will be con-
siderably eliminated and the network bandwidth will be in-
creased. In literature [28], a remote wireless channel between
any pair of racks can be established by reflecting wireless sig-
nals via a mirror from source to destination. FireFly [29] goes
further, it forecasts the traffic demand and adjust the topology
dynamically in a short time period. Wireless DCNs supports
unicast transmission well, but fails to accomplish other trans-
mission models such as broadcast, multicast and shuffle.

10 Conclusion

In this paper, we investigate a family of compound graph
based hybrid topologies for data centers, which combine
the advantages of both structured topologies and random
topologies. We propose a coloring-based routing algorith-
m to enable the shortest path and shorten the routing time-
consumption, effectively. Meanwhile, we propose an integer
programming model to derive the optimal R3 topology, with
given number of servers and amount of ports per switch. To
enable the incremental expansion, besides adding servers one
by one inside a random cluster, we propose to extend the net-
work scale by adding new random clusters one by one. The e-
valuation results indicate that our hybrid topologies consume

14
Compound Graph Based Hybrid Data Center Topologies

much less routing time and incur less cabling-cost than Jelly-
fish, and achieve better throughput than GHCs. In summary,
our proposal achieves the easy-routing, incremental expansi-
ble and high throughput, simultaneously. Thus, our hybrid
topologies are competent to large-scale data centers.

Acknowledgements The authors would like to thank anonymous review-
ers for their constructive comments. This work is supported in part by
the National Natural Science Foundation for Outstanding Youth under
grant No.61422214, the National 973 Basic Research Program under grant
No.2014CB347800, the Program for New Century Excellent Talents in U-
niversity, and the Distinguished Young Scholars of National University of
Defense Technology under grant No.JQ14-05-02.

References

1. M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity

data center network architecture,” ACM SIGCOMM Computer Com-

munication Review, vol. 38, no. 4, pp. 63–74, 2008.

2. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible

data center network,” ACM SIGCOMM Computer Communication Re-

view, vol. 39, no. 4, pp. 51–62, 2009.

3. D. Guo, T. Chen, D. Li, M. Li, Y. Liu, and G. Chen, “Expandable

and cost-effective network structures for data centers using dual-port

servers,” Computers, IEEE Transactions on, vol. 62, no. 7, pp. 1303–

1317, 2013.

4. J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in

Proc. SOCC, ACM, October 2011.

5. A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-

working data centers randomly.” in Proc. USENIX NSDI, San Jose,

USA, April 2012.

6. L. Gyarmati and T. A. Trinh, “Scafida: A scale-free network inspired

data center architecture,” ACM SIGCOMM Computer Communication

Review, vol. 40, no. 5, pp. 4–12, 2010.

7. A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data center

topology design,” in Proc. USENIX NSDI, Seattle, USA, April 2014.

8. L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyper-

bus structures for a computer network,” IEEE Transactions on Com-

puters, vol. 100, no. 4, pp. 323–333, 1984.

9. B. Bollobás, Random graphs. Springer, 1998.

10. F. Reitz, M. Pohl, and S. Diehl, “Focused animation of dynamic com-

pound graphs,” in Proc. IEEE IV, Barcelona,Spain, July 2009.

11. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable

and fault-tolerant network structure for data centers,” ACM SIGCOMM

Computer Communication Review, vol. 38, no. 4, pp. 75–86, 2008.

12. D. Guo, H. Chen, Y. He, H. Jin, C. Chen, H. Chen, Z. Shu, and

G. Huang, “Kcube: A novel architecture for interconnection network-

s,” Information Processing Letters, vol. 110, no. 18, pp. 821–825,

2010.

13. D. Guo, C. Li, J. Wu, and X. Zhou, “Dcube: A family of high perfor-

mance modular data centers using dual-port servers,” Elsevier Journal

of computer communication, vol. 53, pp. 13–25, 2014.

14. J. Xie, D. Guo, J. Xu, L. Luo, and X. Teng, “Efficient multicast rout-

ing on bcube-based data centers,” KSII transactions on internet and

information systems, vol. 8, no. 12, pp. 4343–4355, 2014.

15. J. A. Bondy and U. S. R. Murty, Graph theory with applications.

Macmillan London, 1976, vol. 6.

16. D. Brélaz, “New methods to color the vertices of a graph,” Communi-

cations of the ACM, vol. 22, no. 4, pp. 251–256, 1979.

17. H. Aljazzar and S. Leue, “k∗: A heuristic search algorithm for finding

the k shortest paths,” Artificial Intelligence, vol. 175, no. 18, pp. 2129–

2154, 2011.

18. E. Giannini, F. Botta, P. Borro, D. Risso, P. Romagnoli, A. Fasoli,

M. Mele, E. Testa, C. Mansi, V. Savarino et al., “Platelet count/spleen

diameter ratio: proposal and validation of a non-invasive parameter to

predict the presence of oesophageal varices in patients with liver cir-

rhosis,” Gut, vol. 52, no. 8, pp. 1200–1205, 2003.

19. “PHX ModelCenter,” http://www.phoenix-int.com/software/phx-

modelcenter.php/, 2014.

20. J. Guo, F. Liu, D. Zeng, J. Lui, and H. Jin, “A cooperative game based

allocation for sharing data center networks,” in Proc. IEEE INFOCOM,

Turin, Italy, April 2013.

21. J. Guo, F. Liu, X. Huang, J. Lui, and Hu, “On efficient bandwidth allo-

cation for traffic variability in datacenters,” in Proc. IEEE INFOCOM,

Toronto, Canada, April 2014.

22. J. Misra and D. Gries, “A constructive proof of vizing’s theorem,” In-

formation Processing Letters, vol. 41, no. 3, pp. 131–133, 1992.

23. V. Liu, D. Halperin, A. Krishnamurthy, and T. E. Anderson, “F10: A

fault-tolerant engineered network,” in Proc. USENIX NSDI, Lombard,

USA, April 2013.

24. K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,

X. Wen, and Y. Chen, “Osa: An optical switching architecture for data

center networks with unprecedented flexibility,” IEEE/ACM Transac-

tions on Networking, vol. 22, no. 2, pp. 498–511, 2012.

25. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu, “Bcube: a high performance, server-centric network architecture

for modular data centers,” ACM SIGCOMM Computer Communication

Review, vol. 39, no. 4, pp. 63–74, 2009.

26. H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “Mdcube: a high perfor-

mance network structure for modular data center interconnection,” in

Proc. CoNEXT, New York, USA, December 2009.

27. D. Li, M. Xu, H. Zhao, and X. Fu, “Building mega data center from

heterogeneous containers,” in Proc. ICNP, Vancouver, Canada, Octo-

ber 2011.

28. X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,

and H. Zheng, “Mirror mirror on the ceiling: flexible wireless links

for data centers,” ACM SIGCOMM Computer Communication Review,

vol. 42, no. 4, pp. 443–454, 2012.

29. N. H. Azimi, Z. A. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,

H. Shah, and A. Tanwer, “Firefly: a reconfigurable wireless data center

fabric using free-space optics,” in Proc. SIGCOMM, Chicago, USA,

August 2014.

Front. Comput. Sci.
15

Lailong Luo received the B.S. degree in

school of information system and man-

agement from National University of

Defence Technology, Changsha, Chi-

na, in 2013. He is currently working

toward the M.S. degree in College of

Information System and Management,

National University of Defense Tech-

nology, Changsha, China. His research interests include data centers

and software defined networks.

Deke Guo received the B.S. degree in

industry engineering from Beijing Uni-

versity of Aeronautic and Astronautic,

Beijing, China, in 2001, and the Ph.D.

degree in management science and en-

gineering from National University of

Defense Technology, Changsha, China,

in 2008. He is an Associate Professor

with the College of Information System and Management, National

University of Defense Technology, Changsha, China. His research

interests include distributed systems, software-defined networking,

data center networking. He is a member of the ACM and the IEEE.

Wenxin Li received the B.E. degree

from the School of Computer Science

and Technology, Dalian University of

Technology, Dalian, China, in 2012.

Currently, he is a Ph.D. candidate in the

School of Computer Science and Tech-

nology, Dalian University of Technol-

ogy, Dalian, China. His research inter-

ests include data center networks and cloud computing. His research

interests include data center networks and cloud computing.

Tian Zhang, born in 1994, Chang-

sha, China, a sophomore student from

School of Information Management of

Wuhan University, Wuhan, China. His

major is Information Management and

Information System, and his research

interest is mainly on Wireless Sensor

Networks and Data Center Network-

ing. Besides, he also works on Indoor Localization with mentor and

partners in National University of Defense Technology, Changsha,

China.

Junjie Xie received the B.S. degree in

computer science and technology from

Beijing Institute of Technology, Bei-

jing, China, in 2013. He is currently

working toward the M.S. degree in Col-

lege of Information System and Man-

agement, National University of De-

fense Technology, Changsha, China.

His research interests include distributed systems, data centers, soft-

ware defined networks and interconnection networks.

Xiaolei Zhou received the B.A. degree

from the Information Management De-

partment, Nanjing University, P.R. Chi-

na, in 2009, and the MS degree in mil-

itary science from the National Univer-

sity of Defense Technology, P.R. Chi-

na, in 2011. He is currently working

toward the PhD degree in the School of

Information System and Management, National University of De-

fense Technology, P.R. China. His current research interests include

indoor localization, wireless sensor networks and data center net-

working.

