
Chen et al. BMC Bioinformatics  (2017) 18:315 
DOI 10.1186/s12859-017-1725-6

SOFTWARE Open Access

CMSA: a heterogeneous CPU/GPU
computing system for multiple similar
RNA/DNA sequence alignment
Xi Chen, Chen Wang, Shanjiang Tang, Ce Yu* and Quan Zou

Abstract

Background: The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in
bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running
time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient
or contain some implicit assumptions that limit the generality of usage. First, the information of users’ sequences,
including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown
before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for
aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further
optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization
on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the
utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously.

Results: This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous
CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users’ submitted
sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices
are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its
center sequence selection process from O(mn2) to O(mn). The experimental results show that CMSA achieves an up
to 11× speedup and outperforms the state-of-the-art software.

Conclusion: CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap
based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of
modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run
computation model can maximize the entire system utilization significantly. The source code is available at https://
github.com/wangvsa/CMSA.

Keywords: Heterogeneous, GPU, Multiple sequence alignment (MSA), Center star alignment

Background
Multiple sequence alignment (MSA) refers to the prob-
lem of aligning three or more sequences with or without
inserting gaps between the symbols [1]. It is a fundamental
tool for similar sequences analysis in computational biol-
ogy and molecular function prediction. In computational
molecular biology, similar DNA sequences are aligned
to find out the single nucleotide polymorphism and the
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copy-number variant, which is the key content in genetics
[2]. In molecular function prediction, large-scale similar
DNA sequence alignment is required when addressing the
evolutionary analysis of bacterial and viral genomes [3].
Therefore, MSA software need to be efficient and scal-
able to handle large-scale datasets, which may contain
hundreds of thousands of similar sequences.
MSA is a problem with an exponential time complex-

ity, it has been proven to be NP-complete [4]. Many
heuristic algorithms are developed and implemented by
previous studies, including Kalign [5], MAFFT [6] and
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Clustal [7]. However, our experiments show that none of
these heuristic-based softwares can address the alignment
of large-scale RNA/DNA datasets with more than 100,000
sequences. Besides, all of these softwares are optimized
either for short sequences or long sequences and none of
them are designed for any arbitrary lengths of sequences.
On the other hand, heuristic methods model the MSA

problem as multiple pairwise alignment problems, and
there are two kinds of classic algorithms, i.e., tree-based
algorithm and center star algorithm. In the tree-based
algorithm, an evolutionary tree may be assumed, with the
input sequences assigned to the leaves. Additional recon-
structed sequences, corresponding to the internal nodes
of the tree, are added to the multiple alignment. A star-
alignment will denote the special case in which the tree
has only one internal node. This is a reasonable model for
the evolutionary history of some input sequences where
all the observed sequences are assumed to have arisen by
separate lineages from a single ancestral sequence [8]. For
this scenario, the center star algorithm reduce the times
of pairwise alignment, and both methods could achieve
a similar accuracy. So in this paper, we focus on parallel-
ing and optimizing the center star algorithm. A K-band
strategy [2, 9] is proposed to reduce the time and space
cost of dynamic programming process and then devel-
oped a MSA software named HAlign, which is based on
the center star algorithm and K-band strategy. But its time
complexity of finding the center sequence is still too high
to make it practical for large-scale datasets. Therefore, we
believe that it is necessary to further optimize the center
star algorithm for large-scale MSA problems.
Recently, Graphic Processing Unit (GPU) with the Com-

pute Unified Device Architecture (CUDA) programming
model is widely used as additional accelerators for time-
consuming computations. And heterogeneous CPU and
GPU platform is a desirable way to overlap the compu-
tation of the CPU and GPU to fully exploit the com-
pute capability and shorten the runtime [10]. However,
in the multiple similar sequence alignment area, few par-
allel implementations exist that can address large-scale
datasets and produce good speedups.
In this paper, we present CMSA, a robust and efficient

MSA system for large-scale datasets on the heterogeneous
CPU/GPU platform. CMSA is based on the center star
strategy and mainly focuses on the alignment of similar
RNA/DNA sequences. It can perform and optimize multi-
ple sequence alignment automatically for users’ submitted
sequences of any arbitrary length and volume. Second, it
adopts the co-run computation model that leverages both
CPU and GPU for sequence alignment. So it could max-
imize the entire system utilization. A pre-computation
mechanism is developed in CMSA to estimate the com-
puting capacity of CPU and GPU in advance. CMSA then
distributes the workloads for CPU and GPU based on this

estimation to achieve a better load balance. Furthermore,
we propose a novel bitmap based algorithm to find the
center sequence, which is the most crucial procedure in
the center star strategy. The new algorithm reduces the
time complexity from O(mn2) to O(mn) without sacrific-
ing the accuracy. The experiments demonstrate the effi-
ciency and scalability of CMSA. Specifically, it shows that
CMSA has a linear scalability as the number of sequences
increases and achieves a speedup up to 11×. We also com-
pare CMSA with the state-of-the-art MSA tools including
MAFFT, Kalign, andHAlign. The results show that CMSA
is much faster than these tools and is able to process large-
scale datasets in an acceptable time, whereas previous
tools cannot.

Multiple similar sequence alignment
Similar sequences probably have the same ancestor, share
the same structure, and have a similar biological func-
tion. The biological information associated with similar
sequences can provide the necessary foundation for deter-
mining the structure and function of the newly discovered
ones. For example, in computational molecular biology,
the alignment of similar DNA sequences can be used to
find single nucleotide polymorphism.
There are several MSA methods that utilize the feature

of the similarity between sequences. Progressive MSA
methods align the most similar sequences firstly, add then
add the less related sequences to the alignment in succes-
sion. The basic idea is that long common substrings can
be rapidly extracted from the pairwise sequences when
the input sequences are highly similar. Thus, we only
need to align the remaining short regions. However, few
MSA tools are implemented for massive similar sequences
alignment. Therefore, we need some methods to solve the
MSA problem on similar large-scale datasets.

Center star strategy
The main approach underlying the center star strategy is
to transform the MSA problem into pairwise alignment
problems.
For a dataset of n sequences with the average length of

m, the ith sequence is define as si, where 1 ≤ i ≤ n.
Sij is the similarity score of sequences si and sj. Si is the
total similarity score of sequence si. Then the Si is can be
computed with the following equation:

Si =
n∑

j=1
Sij, j �= i

Center star strategy contains three steps:

Step 1. Center sequence selection. Compute the total
similarity score Si for each sequence and choose the
one with a maximum value as the center sequence.
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Step 2. Pairwise alignment.The center sequence then is
pairwise aligned with each of the other sequences.

Step 3. Subtotaling the inserted spaces. All of the
inserted spaces are summed to obtain the final MSA
result.

Now we analyze the time complexity of the center star
strategy. The result is shown in Table 1. Suppose we use
a dynamic programming method such as Needleman-
Wunsch [11] to align sequences, which demands O(m2)
for both time and space. And in the first step, a naive
way to find the center sequence is to align each pair of
sequences, which costs a total time of O(m2n2). Then in
the second step, aligning the center sequence with other
n − 1 sequences demands a total time of (mn2). The
position information of all inserted gaps can be stored in
O(mn) spaces. In the last step, those gaps are summed to
generate the final result.
The second column in Table 1 shows these three steps’

time complexity of a naive center star strategy. A con-
clusion can be drawn from the table that most of the
time would be used to find the center sequence. To
reduce this cost, HAlign [9] uses trie trees to acceler-
ate the process. The time complexity for building a trie
tree for one sequence is O(m). Searching n sequences
in a trie tree incurs a time cost of O(mn). These two
steps are performed n times to find the center sequence,
which requires a total time of O(mn2). But for large-scale
datasets where n � m, it’s still not efficient enough.
Therefore, in this paper, we propose a novel bitmap-based
algorithm that could reduce the time complexity of the
first stage to O(mn) and also achieves a better accuracy
compared to HAlign. Our approach will be discussed in
detail in “An improved center star algorithm” section.

Heterogeneous CPU/GPU architecture
There are several different parallel programming
approaches on multi-core systems:

(i) Low-level multi-tasking or multi-threading such as
POSIX Thread (pThread) library [12].

(ii) High-level libraries, such as Intel Threading Building
Blocks [13], which provides certain abstractions and
features attempting to simplify concurrent software
development.

(iii) Programming languages or language extensions
developed specifically for concurrency, such as
OpenMP [14].

Table 1 The time complexity of the center star strategy

Step Naive center star HAlign CMSA

1 O(m2n2) O(mn2) O(mn)

2 O(m2n) O(m2n) O(m2n)

3 O(mn) O(mn) O(mn)

Moreover, GPU now is widely used to accelerate
time-consuming tasks. GPU contains a scalable array
of multi-threaded processing units known as stream-
ing multi-processors (SM). Although GPU is origi-
nally designed to render graphics, general-purpose GPU
(GPGPU) breaks this limit, and CUDA [15] is proposed
as a general-purpose programming model for writing
highly parallel programs. This model has proven quite
successful at programming a broad range of scientific
applications [16].
A heterogeneous CPU/GPU platform is proposed to

achieve the best performance. Figure 1 depicts this archi-
tecture. CPU and GPU are connected by PCIE and both of
them have their own memory space. There are two main
methods for heterogeneous CPU/GPU programming.

(i) Consider CPU as a master and GPU as a worker.
CPU handles the work assignment, data distribution,
etc. GPU is responsible for the whole computation.

(ii) CPU still plays the role of a master and at the same
time, it shares a portion of GPU’s computations.

The former method has a clear work division between
CPU and GPU but wastes the computing resource of
CPU regrettably. The latter method has a better perfor-
mance, but it also brings in some tricky issues such as the
load balance and extra communications betweenCPU and
GPU.

Challenges and approaches
There are several key issues that we need to address
for MSA in practice. In the following, we highlight
these challenges and then give our corresponding solu-
tions. The detailed implementation will be described in
“Implementation” section.
The MSA problem on similar RNA/DNA sequence.

Most MSA methods and tools ignore the similarity of
RNA/DNA sequences, which is an important characteris-
tic in RNA/DNA sequence alignment. Center star strategy
is more suited for similar sequence alignment, but its cen-
ter sequence selection process is very slow especially for
large-scale datasets.

Fig. 1 The heterogeneous CPU/GPU architecture. To achieving the
best performance, the co-run model of CPU and GPU is adopted
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An improved center star algorithm. We have analyzed
that the first stage, center sequence selection, is the most
time-consuming part of a straightforward implementa-
tion of the center star strategy. Therefore, we designed a
bitmap liked algorithm to find the center sequence. The
time complexity is reduced from O(mn2) to O(mn), as
discussed in “Center star strategy” section.
Low utilization problem on the heterogeneous

CPU/GPU platform. To further improve the perfor-
mance of CMSA, parallelization is a sensible way.
However, most GPU based MSA systems perform all
computations on GPU only. The CPU source is idle. And
these GPU based systems cannot run on different plat-
forms which only contain CPU device. Therefore, it’s
necessary to exploit the computing power of CPU and
GPU at the same time.
Co-run computation model. To fully utilize all available

computing capacities in the heterogeneous CPU/GPU
platform, it is crucial to enable CPU and GPU work con-
currently for workload computations (i.e., co-run compu-
tation), which means that CPU also performs a portion of
computation instead of waiting for GPU to do all the work.
The software designed for heterogeneous CPU/GPU plat-
form can adapt to different computation environment.
And when the GPU is not available, the CPU can handle
the overall computation. Thus, CMSA can run on dif-
ferent platforms with or without GPUs. We designed a
pre-computation mechanism to decide how to distribute
workloads between CPU and GPU.
Different lengths of sequences. Previous MSA soft-

ware mainly focus on either short or long sequences, but
no work consider both of them.
Automatical configuration. CMSA could automatically

configure the parameters like thread number and block
number according to the lengths of sequences. When the
space requirement exceeds GPU’s global memory limit,
the related computation will be executed on CPU only.

Implementation
In this section, the execution overflow of CMSA is first
explained. Then our improved center star algorithm is dis-
cussed. At last, the implementation details of CMSA on
the heterogeneous CPU/GPU platform is described.

Execution overflow
CMSA is a heterogeneous CPU/GPU system, using
CUDA and OpenMP for parallelization. To reduce
the total execution time, CPU also carries out part of the
alignment task instead of waiting for GPU to deal with the
whole work. The execution overview of CMSA is shown
in Fig. 2. It contains following steps:

Step 1. Read input sequences. CMSA reads all
sequences into the host (CPU) memory. After the

pre-computation process, a copy of sequences that
would be handled by GPU will be sent to the device
(GPU) memory.

Step 2. Select center sequence. We design a bitmap
based algorithm to find the center sequence. This
process has a time complexity of O(mn) and could
be finished within few seconds even with massive
sequences, so it is performed on CPU only without
any parallelization. The algorithm will be discussed
in “An improved center star algorithm” section.

Step 3. Workload allocation. CMSA performs a pre-
computation process to decide how to distribute
workload for CPU and GPU. In this process, a small
number of sequences are aligned in advance to eval-
uate the computing capacity of CPU and GPU. The
detailed information of workload allocation will be
described in “Workload distribution” section.

Step 4. Pairwise sequence alignment. CPU and GPU
independently execute pairwise alignment of
assigned sequences. For better performances, tasks
on CPU are executed in parallel by using OpenMP
library. On the GPU end, the parameters like the
number of threads in a block and the number
of blocks in a grid can be automatically config-
ured based on the different lengths of sequences.
“Parallel optimization of pairwise alignment” section
will describe the implementation of both ends.

Step 5. Output. When both CPU and GPU finish their
job, CMSA gathers the result from GPU and CPU,
then merges the inserted gaps to generate the final
result.

An improved center star algorithm
As we discussed in “Center star strategy” section, a
straightforward implementation of center star strategy is
time-consuming mainly because its first stage. In spite
of an improved method has been proposed by HAlign,
which could substantially reduce the time of finding the
center sequence, it still has a O(mn2) time complexity.
For large-scale datasets where n � m, it would become
the bottleneck. Thus in this paper, we propose a bitmap
based algorithm to further optimize the center sequence
selection process.
First, every sequence is partitioned into a series of dis-

joint segments. Each segment consists of 8 characters. We
use 2 bits (binary number) to represent a character. So a
segment needs 16 bits space, which then can be stored in
one integer. An example is given in Table 2. Suppose char-
acters ‘A’, ‘T’, ‘C’, ‘G’ are represented by binary numbers 00,
01, 10, and 11, respectively. The binary number of seg-
ment “ATCGCGAT” is 0001111011100001, which then is
transformed into a decimal number 7905.
Second, an array of integers denoted as Occ[ ] is built

for recording the time of occurrence of all segments.
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Fig. 2 The overall flow of CMSA. Multiple sequence alignment is handled on the heterogeneous CPU/GPU platform

The decimal numbers of their represented segments are
used as indexes. Therefore, the size of this array is 216
(Occ[ 65535]) since the maximum decimal number of a
segment is 216. All elements ofOcc is initialized with zero.
Next, we look through all segments in each sequence and
count the occurrences of them. For example, if a sequence
has a segment “ATCGCGAT”, whose decimal number is
7905, then the value of Occ[ 7905] is increased by one.
Notice that same segments in one sequence only count
once.
Finally, we find the center sequence with Occ. We cal-

culate a similarity score (SS) for each sequence by accu-
mulate the occurrences of all its segments. Suppose a
sequence contains p segments and the decimal numbers of
these segments are d1, d2, . . . , dp, then its similarity score
is: SS = Occ[ d1]+Occ[ d2]+ · · · + Occ[ dp]. After calcu-
lating all similarity scores, the sequence with a maximum
SS is chosen to be the center sequence.
If there are n sequences with the average length of m,

building the Occ array for one sequence needs a time of

Table 2 Example of a segment. Convert the RNA/DNA segments
to the decimal numbers

Segment ATCGCGAT

Binary number 0001111011100001

Decimal number 7905

O(m). So the process incurs a time cost of O(mn) for n
sequences. Besides, calculating a similarity score for one
sequence needs to access Occ m times, so all SSs can be
calculated in the time of O(mn). Therefore, the total time
complexity of center sequence selection is O(mn), which
is less than HAlign’sO(mn2). In our experiments, the pro-
cess of finding the center sequence can complete in a few
seconds for a dataset with 500 thousands of sequences.
As discussed in “Center star strategy” section, we apply

the dynamic programming method in the second phase of
the center star strategy, which requires a time of O(m2n).
In other words, the second step of CMSA, i.e. pair-
wise alignments, is now the most time-consuming phase.
Therefore, we only focus on parallelizing the second step.

Workload distribution
One of the key issues of a heterogeneous system is load
balance. Since CPU and GPU differ greatly in computing
capability, a heterogeneous system needs a way to esti-
mate this differential to achieve the load balance. Suppose
the execution time of CPU and GPU are T1 and T2, then
the total time of the pairwise alignment is the maxmum
value of T1 and T2. So the best performance is achieved
when the computations of CPU and GPU are completely
overlapped, which means T1 = T2.
In CMSA, a pre-computation process is performed to

decide how to distribute the workload for CPU and GPU.
In this process, both CPU and GPU computes the same



Chen et al. BMC Bioinformatics  (2017) 18:315 Page 6 of 10

number of sequences (a small portion of input sequences).
CMSA compares the execution time of CPU and GPU
(denoted as t1 and t2) to calculate a ratio of computing
capability R, R = t1

t2 . According to this ratio, CMSA then
assigns n

R+1 sequences to CPU and the rest Rn
R+1 sequences

to GPU, where n is the number of input sequences.

Parallel optimization of pairwise alignment
In the CPU end, OpenMP is used to accelerate the pair-
wise alignment in a coarse-grained manner. The compu-
tation of the DP matrix and the backtracking of score
matrices are mapped onto different threads. In other
words, each thread is responsible for aligning the center
sequence with a different sequence. Threads are working
independently, and each thread handles its own mem-
ory space including allocating and releasing the resources.
The number of threads is usually set to the number of
cores in the CPU.
Typical general-purpose graphics processors consist of

multiple identical instances of computation units called
Stream Multiprocessors (SM). SM is the unit of computa-
tion to which a group of threads, called thread blocks. A
CUDA program consists of several kernels. When a ker-
nel is launched, a two-level thread structure is generated.
The top level is called grid, which consists of one or more
blocks, denoted as B. Each block consists of the same num-
ber of threads, denoted as T. The whole block will be
assigned to one SM.
Like the implementation on CPU, each thread in a ker-

nel aligns one sequence with the center sequence, which
means each kernel computes B× T sequences. As we dis-
cussed early, GPU handles Rn

R+1 sequences totally. So on
the GPU end, Rn

(R+1)(BT)
kernels are executed. Since each

kernel computes the same number of sequences and the
DP matrices computed by each kernel are not used in the
next kernel, we could recycle these memory resources.
Before the first kernel is invoked, CMSA allocates the
memory required for storing the DP matrices in one ker-
nel. And when the last kernel finishes, the memory will
be released. The DP matrix is stored in a one-dimensional
way in the global memory of GPU. For example, there is a
12GB global memory. In theory, each kernel can simulta-
neously compute 53688 sequences of the length of 200 if
each element in the DP matrix contains three short short
type digital in this paper.

Results and discussion
We evaluate CMSA using 16s rRNA sequences on a het-
erogeneous CPU/GPU workstation. In this section, we
first introduce the experimental environments and then
evaluate the efficiency and scalability of CMSA along with
our bitmap based algorithm. Finally, we compare CMSA
with some of state-of-the-art MSA tools.

Experimental setup
Experimental platform
The experiments are carried out on a heterogeneous
CPU/GPU platform, which has 32GBRAM, an Intel Xeon
E5-2620 2.4 GHz processor and an NVIDIA Tesla K40
graphic card. Centos 6.5 is installed and CUDAToolkit 6.5
is used to compile the program. The CPU consists of 12
cores. The detailed specifications of Tesla K40 is shown in
Table 3.

Datasets
The BALiBASE is small and is suited only for pro-
tein alignment. As there is no benchmark datasets con-
tain large-scale DNA/RNA sequences, we employ human
mitochondrial genomes(mt genomes) and 16s rRNA. 16s
rRNA sequences are often used to infer phylogenetic rela-
tionships and to distinguish species in microbial environ-
mental genome analyses (Hao et al., 2011). All sequences
are obtained fromNCBI’s GenBank database (http://www.
ncbi.nlm.nih.gov/pubmed). The mt genomes is a highly
similar dataset. To address DNA/RNA sequences with low
similarity, we also tested our program on 16s rRNA. We
classified these 16s rRNA sequences into three datasets
according to their average lengths, named as D1, D2 and
D3, respectively, as shown in Table 4.

Metrics
The sum-of-pairs (SP) score is often chosen to mea-
sure the alignment accuracy. The SP score is the sum of
every pairwise alignment score from the MSA. But for
large-scale datasets, it may be very large and exceeds the
computer’s limitation. Thus we employ the average SP
value, which is simply divided the SP value by the number
of sequences, n. The average SP can also describe align-
ment performance. In the experimental tests, a program,
“bali_score”, downloaded from the Balibase benchmark
(http://www.lbgi.fr/balibase/) was used to compare the
alignment results.

Baselines
To show the efficiency and accuracy of CMSA, we com-
pare CMSA with state-of-the-art MSA tools including

Table 3 GPU hardware specifications

Tesla K40

CUDA Driver Version / Runtime Version 8.0 / 8.0

CUDA compute capability 3.5

CUDA cores 2880

GPU clock rate (MHz) 745

Total amount of global memory (GB) 12

Memory bandwidth (GB/s) 288

Shared memory size per block (bytes) 49152

Registers available per block 65536
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Table 4 Experimental datasets

Dataset Average length Num File size

MT 16569 672 11 MB

D1 252 500000 183.8 MB

D2 490 500000 290.6 MB

D3 748 500000 414.3 MB

16s rRNA 1388 1011621 1.4 GB

Kalign, MAFFT and HAlign. Most of state-of-the-art
MSA software cannot handle large-scale datasets. In
order with data handling size, these tools are T-Coffee
(small), CLUSTAL (medium), MAFFT (medium-large)
and Kalign(large), as suggesting by EMBL-EBI. Therefore,
the MAFFT, Kalign v2 is adopted. Besides, HAlign is the
state-of-the-art software using center star strategy. There-
fore, we use HAlign, MAFFT and Kalign v2 as bench-
marks, and default parameters of Kalign v2, MAFFT and
HAlign are used. For fairer comparison, all experiments
are conducted on one node.

Bitmap based algorithm for selecting the center sequence
As we discussed in “Center star strategy” section, both
HAlign and CMSA are based on center star strategy.
HAlign uses a tire-tree based algorithm to find the center
sequence whereas CMSA uses a bitmap based algorithm.
To evaluate our new proposed algorithm, we first com-
pare the running time of the first stage of HAlign and
CMSA. Then we perform the subsequent steps using
the center sequence selected by HAlign and compare its
results with ours. In addition to our own datasets, we
also test HAlign and CMSA on the human mitochon-
drial genomes dataset(marked as MT), which is used in
HAlign’s experiments. The human mitochondrial genome

dataset is a highly similar dataset. It has a total of 672
human mitochondrial genomes shown in Table 4.
Table 5 shows the running time and SP score of HAlign

and CMSA(CPU) based on different center sequence
selection algorithms. For fairness, the HAlign was tested
on only one node. The center sequence showed in the
table is the zero-based index of sequences. As we can see,
CMSA ismuch faster thanHAlign in all experiments since
our bitmap based algorithm has a lower time complexity
(O(mn)). Also, HAlign runs out of memory when comput-
ing dataset D3 with 5000 sequences. When processing the
dataset D2 with 1000 sequences and the dataset D3 with
1000 sequences, HAlign and CMSA find the same cen-
ter sequence. Except these two tests, HAlign and CMSA
reach a different result. And when inspecting the average
SP score, CMSA performs better than HAlign. Besides,
the better average SP score occurs with the datasets of
high similarity. Thus we can conclude that our new algo-
rithm used to find the center sequence is efficient and
accurate with high and low similarity.

Efficiency and scalability
As an indication of how CMSA scales with the size of
dataset, Fig. 3a shows the running time of CMSA on all
three datasets described in Table 4. It’s clear that the
longer the average length is, the more time it would cost.
Moreover, in all three datasets, the running time goes
up linearly as the number of sequences increases, which
demonstrates a great scalability of CMSA. Figure 3b shows
the speedup of the same experiments. The best speedup is
not achieved at first since with a low number of sequences,
the runtime of the pre-compute and initialization makes
up a considerable proportion. With the increase of the
number of sequences, the real computation would dom-
inate most of the running time, which in turn reports a
better speedup.

Table 5 The running time and SP score of single core HAlign and CMSA(CPU) based on different center sequence selection algorithms

Dataset Num

Center sequence Running time(s) Average SP score

HAlign CMSA HAlign CMSA HAlign CMSA

Step1 Step2 Step3 Overall Step1 Step2 Step3 Overall

MT 672 16 479 88.19 33.40 21.11 142.70 0.80 43.40 0.50 44.70 0.977 0.987

1000 912 575 2.22 0.42 0.24 2.88 0.05 0.40 0.03 0.48 0.549 0.570

D1 3000 912 575 23.17 2.75 0.77 26.69 0.13 1.20 0.10 1.43 0.550 0.588

5000 3477 2266 67.95 2.10 1.28 71.33 0.16 2.15 0.23 2.54 0.492 0.523

1000 158 158 6.93 0.52 0.99 8.44 0.07 1.40 0.10 1.57 0.508 0.548

D2 3000 181 1447 70.64 5.07 1.20 76.91 0.18 4.90 0.25 5.33 0.484 0.500

5000 3533 4677 200.38 10.31 7.60 218.29 0.25 0.96 0.42 1.63 0.455 0.510

1000 697 697 13.50 2.19 1.85 17.54s 0.12 4.22 0.17 4.15 0.513 0.540

D3 3000 2170 3217 125.06 2.19 1.85 129.10 0.24 13.44 0.34 14.02 0.527 0.528

5000 2420 2992 351.49 8.40 9.75 369.64 0.37 22.13 0.60 23.10 0.518 0.523
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Fig. 3 Experiments on datasets with different number of sequences. D1, D2, D3 represent three kinds of datasets described in Table 4. a Running
time and b Speedup

We have test the CMSA (CPU/GPU) with different
numbers of sequences(average length:252). Table 6 shows
the workload ratio (R) described in “Workload dis- tribu-
tion” section. From the table, the values of workload ratio
are similar, and the average workload ratio of GPU and
CPU is 1.420. We can confirm that CMSA has the good
method of workload distribution for CPU and GPU.

Comparison with State-of-the-art tools
To show the efficiency and accuracy of CMSA, we com-
pare CMSA with state-of-the-art MSA tools. In this
setion, CMSA(CPU) and CMSA(CPU/GPU) are both
tested.
Table 7 shows the time consumed for three datasets with

different number of sequences computed. In our experi-
ments, Kalign cannot handle datasets that consist of more
than 100,000 sequences. MAFFT runs without a problem,
but it takes too much time, e.g. 18 h for D1 with 100,000
sequences andmore than 24 h for D2 and D3 with 100,000
sequences. So we don’t record the exact running time of
CMSA for D2 and D3 with more than 100,000 sequences.
In comparison, both HAlign and CMSA can handle all
datasets in an acceptable time. Moreover, in all experi-
ments, CMSA is the fastest one and also the one having
the best scalability as the number of sequences increases.
When computing D3, CMSA is 13× faster than HAlign
when the dataset size is 10,000 and 24× faster when the
size increases to 500,000.

Table 6 Workload radio for GPU and CPU

Dataset Number Workload radio

D1 100000 1.382

200000 1.432

300000 1.435

400000 1.426

500000 1.423

Table 8 shows the comparison result of average SP
scores for 16 s rRNA datasets. From Table 8, we can
observe that MAFFT produced better alignment results
than other state-of-the-art MSA softwares when address-
ing the large-scale datasets. The average SP of CMSA was
lower than that ofMAFFT and higher than that of HAlign.
Therefore, we confirm the robustness of CMSA, whether
with large-scale or small datasets.

Related work
There are a number of work on MSA problems and
many parallel techniques as well as optimization methods
have been proposed to accelerate MSA algorithms. In this
section, we review them from two aspects.
MSA software and algorithms. MSA software can be

classified into two categories based on their underlying
algorithms: heuristic based or combinatorial optimiza-
tion based. Many popular MSA tools like T-Coffee [17],
CLUSTAL [7], Kalign [5] and MAFFT [6] are based on
heuristic methods. T-Coffee can make accurate align-
ments of very divergent proteins but only for small sets of
sequences, given its high computational cost. CLUSTAL
is suitable for medium-large alignments. On a single
machine, it is possible to take over an hour to com-
pute 10,000 sequences with a more accurate method of
CLUSTAL. Kalign is as accurate as other methods on
small alignments, but is significantly more accurate when
aligning large and distantly related sets of sequences.
MAFFT uses fast fourier transforms, which can han-
dle medium-large file sizes and align many thousands of
sequences. ClustalW [18] has more than 52,400 citations
now and is considered the most popular MSA tool. A
commercial parallel version of ClustalW is designed for
expensive SGI shared memory multiprocessor machines
[19]. ClustalW-MPI [20] targets distributed memory
workstation clusters using MPI but parallelize only Stages
1 and 3 of ClustalW. It achieves speedup of 4.3 using 16
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Table 7 Running time of different MSA tools with different number of sequences and average length

Dataset Number Kalign MAFFT HAlign(one node) CMSA(CPU) CMSA(CPU/GPU)

D1 10000 20m39s 2m26s 39.99s 6.66s 7.71s

100000 - 18h30m 5m59s 41.61s 44.32s

500000 - - 33m17s 3m15s 3m20s

D2 10000 52m28s 4m40s 1m36s 16.21s 17.19s

100000 - - 22m11s 2m14s 2m36s

500000 - - 2h15m 11m6s 12m1s

D3 10000 79m23s 8m59s 10m9s 45.01s 44.11s

100000 - - 15m27s 6m16s 6m21s

500000 - - 11h2m 30m28s 27m58s

processors on the 500-sequences test data. MSA-CUDA
[21] parallelizes all three stages of the ClustalW process-
ing pipeline using CUDA and achieves average speedup
of 18.74 for average-length protein sequences compared
to the sequential ClustalW. CUDA MAFFT [22] also uses
CUDA to accelerate MAFFT that can achieve speedup up
to 19.58 on a NVIDIA Tesla C2050 GPU compared to the
sequential and multi-thread MAFFT.
Center star algorithm. The center star algorithm is a

combinatorial optimization method and it is much more
suited for aligning similar sequences. Then, K-band [2] is
proposed to reduce the space and time cost of the pair-
wise alignment stage of the center star strategy. Based on
the fact that for similar sequences, the backtracking often
runs along the diagonal, so the lower left quarter and the
upper right quarter in dynamic programming table are not
taken into consideration. Therefore the K-band method
only computes the band of which the width is k nearby
the diagonal of the dynamic programming table. HAlign
[9]then further optimized the center star algorithm with
a trie-tree data structure, as we discussed in “Center star
strategy” section. But this method still requires a time cost
of O(mn2) to find the center sequence, which is not effi-
cient enough to handle large-scale datasets. Because of
this, their Hadoop version skips the center sequence selec-
tion process and just designate the first sequence as the

center sequence. Moreover, to our best knowledge, there
are no work exist on accelerating the center star algorithm
with CUDA enabled GPUs.

Conclusion
In this paper, we designed CMSA, a robust and efficient
MSA system for large-scale datasets on the heterogeneous
CPU/GPU system. CMSA is based on an improved center
star strategy, for which we proposed a novel bitmap based
algorithm to find the center sequence. The new algorithm
reduces the time complexity from O(mn2) to O(mn).
Moreover, CMSA is capable of aligning a large number of
sequences with different lengths, which extends the gen-
erality of previous studies in MSA. In addition, to fully
utilize the computing devices, CMSA takes co-run com-
putation model so that the workloads are assigned and
computed on both CPU and GPU devices simultaneously.
Specifically, we proposed a pre-computation mechanism
in CMSA to distribute workloads to CPU and GPU based
on their computing capacity. Moreover, the more accu-
rate mechanism will be future work to be performed for
CMSA.
The experiment results demonstrated the efficiency

and scalability of CMSA for large-scale datasets. CMSA
achieved a speedup of 11 at best and can handle a large
dataset with 500,000 sequences in half an hour. We also

Table 8 Average SP scores of different MSA tools with different number of sequences and average length

Dataset Number Kalign MAFFT HAlign(one node) CMSA(CPU) CMSA(CPU/GPU)

D1 10000 0.570 0.560 0.340 0.467 0.428

100000 - 0.561 0.340 0.478 0.431

500000 - - 0.372 0.473 0.423

D2 10000 0.458 0.472 0.329 0.467 0.447

100000 - - 0.380 0.474 0.454

500000 - - 0.327 0.480 0.449

D3 10000 0.480 0.479 0.401 0.474 0.414

100000 - - 0.376 0.477 0.437

500000 - - - 0.472 0.441
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evaluated our center sequence selection algorithm. It is
much faster and accurate that trie-tree based algorithm
proposed in HAlign. Besides, we compared CMSA with
some state-of-the-art MSA tools including Kalign, HAlign
andMAFFT. In all our experiments, CMSA outperformed
those software both in average SP scores and in the execu-
tion times.

Availability and requirements
• Project name: CMSA
• Project home page:

https://github.com/wangvsa/CMSA
• Operating system(s): Linux 64-bit
• Programming language: C++, CUDA, OpenMP
• Other requirements: CUDA-capable GPU
• license: GUN GPL
• Any restrictions to use by non-academics: None
• The datasets used in this paper is available from:

http://datamining.xmu.edu.cn/software/halign/and
http://www.ncbi.nlm.nih.gov/pubmed.

• The program,“bali_score", is available from the
Balibase bench-mark (http://www.lbgi.fr/balibase/).
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