
MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Fairness-Efficiency Scheduling for Cloud
Computing with Soft Fairness Guarantees

Shanjiang Tang, Ce Yu, Yusen Li

Abstract—Fairness and efficiency are two important metrics for users in modern data center computing system. Due to the heterogeneous
resource demands of CPU, memory, and network I/O for users’ tasks, it cannot achieve the strict 100% fairness and the maximum efficiency
at the same time. Existing fairness-efficiency schedulers (e.g., Tetris) can balance such a tradeoff elastically by relaxing fairness constraint
for improved efficiency using the knob. However, their approaches are unaware of fairness degradation under different knob configurations,
which makes several drawbacks. First, it cannot tell how much relaxed fairness can be guaranteed given a knob value. Second, it fails
to meet several essential properties such as sharing incentive. To address these issues, we propose a new fairness-efficiency scheduler,
QKnober, to balance the fairness and efficiency elastically and flexibly using a tunable fairness knob. QKnober is a fairness-sensitive
scheduler that can maximize the system efficiency while guaranteeing the θ-soft fairness by modeling the whole allocation as a combination
of fairness-oriented allocation and efficiency-oriented allocation. Moreover, QKnober satisfies fairness properties of sharing incentive, envy-
freeness and pareto efficiency given a proper knob value. We have implemented QKnober in YARN and evaluated it using both testbed and
simulated experiments. The results show that QKnober can achieve good performance and fairness.

Index Terms—Multi-Resource Allocation, Fairness, Efficiency, Hadoop

F

APPENDIX A
PROOF OF THEOREM 1

Proof: For any two users i, j P r1, ns, we have

|
si
wi
´
sj
wj
| ď max

1ďi,jďn
t|
si
wi
´
sj
wj
|u

“ max
1ďi,jďn

t|
smaxi ¨ ρ` s

1

i

wi
´
smaxj ¨ ρ` s

1

j

wj
|u

“ max
1ďi,jďn

t|p
smaxi

wi
´
smaxj

wj
q ¨ ρ` p

s
1

i

wi
´
s
1

j

wj
q|u p18q

“ max
1ďi,jďn

t|p
s
1

i

wi
´
s
1

j

wj
q|u “ max

1ďiďn

s
1

i

wi
´ min

1ďjďn

s
1

j

wj

“ max
1ďiďn

t
U
1

i

Di ¨ wi
¨ max
1ďkďm

t
di,k
rk
uu ´ min

1ďjďn
t

U
1

j

Dj ¨ wj
¨ max
1ďkďm

t
dj,k
rk
uu.

Case #1: When ρ “ 1, we have s
1

i “ 0 for @i P r1, ns
discussed in Section 4.2.1 of the main file. In that case, it holds
| siwi

´
sj
wj
| “ 0 for any user i, j P r1, ns.

Case #2: When 0 ď ρ ă 1, according to the soft fairness defi-
nition, our proof turns to be seeking for an upper bound θ such

that max1ďiďnt
U
1

i

Di¨wi ¨ max1ďkďnt
di,k
rk
uu ´ min1ďjďnt

U
1

j

Dj ¨wj ¨

max1ďkďnt
dj,k
rk
uu ď θ for all feasible allocations under the

resource capacity vector R
1

.
In the efficiency-oriented resource allocation, a feasible allo-

cation U
1

“ xU
1

1, ¨ ¨ ¨,U
1

ny ceases when at least one resource is

‚ S.J. Tang, C. Yu are with the College of Intelligence and Computing, Tianjin
University, Tianjin 300072, China.
E-mail: {tashj, yuce}@tju.edu.cn.
(Corresponding authors: Shanjiang Tang and Ce Yu.)

‚ Yusen Lee is with the School of Computing, Nankai University, Tianjin 300071,
China.
E-mail: liyusen@nbjl.nankai.edu.cn.

fulfilled, i.e.,
max

1ďkďm
t

n
ÿ

i“1

u
1

i,k{r
1

ku “ 1. p19q

Additionally, for all feasible allocations, the maximum value of
U
1

i exists for user i when it possesses all the resource capacity
vector R

1

exclusively. In that case, all other users have no
resource allocations, i.e., @j ‰ i P r1, ns,U

1

j “ 0. We then
get the maximum value of U

1

i according to Formula (5) and (19)
as follows:

U
1

i “
Di

max1ďkďm
di,k

rk´ρ¨
řn
j“1 NkpU

max
k q¨dj,k

. p20q

The upper bound θ of Formula (18) for all feasible allocations
can then be computed, i.e.,

θ “ max
1ďiďn

t
U
1

i

Di ¨ wi
¨ max
1ďkďn

t
di,k
rk
uu ´ min

1ďjďn
t

U
1

j

Dj ¨ wj
¨ max
1ďkďn

t
dj,k
rk
uu

“ max
1ďiďn

t
U
1

i

Di ¨ wi
¨ max
1ďkďn

t
di,k
rk
uu

“ max
1ďiďn

t
max1ďkďn di,k{rk

max1ďkďm
wi¨di,k

rk´ρ¨
řn
j“1 NkpU

max
k

q¨dj,k

u

APPENDIX B
PROOF OF THEOREM 2

Proof: Let’s start with the exclusively non-sharing case,
where each user i schedules tasks under its own partition of the
system resource, i.e., wi

řn
j“1 wj

R. In this case, the allocation stops
when at least one resource is saturated, i.e., max1ďkďmtdi,k ¨
NipUiq{prk ¨

wi
řn
j“1 wj

qu “ 1 for each user i. Therefore,

NipUiq “ 1{ max
1ďkďm

tdi,k{prk ¨
wi

řn
j“1 wj

qu.

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING 2

Now we consider the sharing case for each user i. According to
Formula (8), (14) and (11), we have

NipUiq “
si

max1ďkďmtdi,k{rku
“

smaxi ρ` s
1

i

max1ďkďmtdi,k{rku

“
wi{

řn
j“1 wj ` s

1

i

max1ďkďmtdi,k{rku
ě NipUiq.

APPENDIX C
PROOF OF THEOREM 3

Proof: By contradiction, let’s assume that user i envies the
allocation result of user j under QKnober allocation policy. Then
for user i, it must have

NipUiq ă NipUjq. p21q

We consider the following two cases:
Case 1: Di

|Di| “
Dj
|Dj | : according to the fairness require-

ment of Formula (15), Formula (14) and (8), we have
s
1

i

wi
“

s
1

j

wj
ô si

wi
“

sj
wj

ô
NipUiq¨max1ďkďm

di,k
rk

wi
“

NjpUjq¨max1ďkďm
dj,k
rk

wj
. By exchanging the allocation between

user i, j, subject to the fairness constraint of Formula (15), we

should have
NipUjq¨max1ďkďm

di,k
rk

wi
“

NjpUiq¨max1ďkďm
dj,k
rk

wj
. Then

it follows that
NipUiq¨max1ďkďm

di,k
rk

wi
{
NipUjq¨max1ďkďm

di,k
rk

wi
“

NjpUjq¨max1ďkďm
dj,k
rk

wj
{
NjpUiq¨max1ďkďm

dj,k
rk

wj
i.e.,

NipUiq{NipUjq “ NjpUjq{NjpUiq. p22q

Moreover, Di
|Di| “

Dj
|Dj | ñ

di,k
dj,k

“
|Di|
|Dj | ,@k P r1,ms. According

to Formula (4), we have NipUjq “ min1ďkďmtuj,k{di,ku “
NjpUjq ¨min1ďkďmtdj,k{di,ku “ NjpUjq ¨ |Dj |{|Di|. Hence,

NipUjq{NjpUjq “ |Dj |{|Di|. p23q

Similarly, we have

NjpUiq{NipUiq “ |Di|{|Dj |. p24q

According to Formula (22), (23) and (24), we have NipUiq
NipUjq “

NipUjq¨|Di|{|Dj |
NipUiq¨|Di|{|Dj | “

NipUjq
NipUiq ñ NipUiq “ NipUjq, which contra-

dicts the assumption of Formula (21).
Case 2: Di

|Di| ‰
Dj
|Dj | : According to Formula (4), we have

NipUjq “ min
1ďkďm

t
uj,k
di,k

u “ NjpUjq ¨ min
1ďkďm

t
dj,k
di,k

u. p25q

and
NjpUiq “ min

1ďkďm
t
ui,k
dj,k

u “ NipUiq ¨ min
1ďkďm

t
di,k
dj,k

u. p26q

According to Formula (6), there are

εipUjq “ NipUjq ¨
m
ÿ

k“1

di,k{rk “ NjpUjq ¨ min
1ďkďm

t
dj,k
di,k

u ¨

m
ÿ

k“1

di,k{rk

“ εjpUjq ¨ min
1ďkďm

t
dj,k{rk
di,k{rk

u ¨

řm
k“1 di,k{rk

řm
k“1 dj,k{rk

. p27q

Moreover, since Di
|Di| ‰

Dj
|Dj | , the following two conditions must

hold:

iq. min
1ďkďm

t
dj,k{rk
di,k{rk

u ď
dj,k1 {rk1

di,k1 {rk1

ñ
dj,k1

rk1
ě
di,k1

rk1
¨ min
1ďkďm

t
dj,k{rk
di,k{rk

u,@k
1

P r1,ms. p28q

iiq. min
1ďkďm

t
dj,k{rk
di,k{rk

u ă
dj,k1{rk1

di,k1{rk1

ñ
dj,k1
rk1

ą
di,k1
rk1

¨ min
1ďkďm

t
dj,k{rk
di,k{rk

u, Dk1 P r1,ms. p29q

According to Formula (28) and (29), we have

min
1ďkďm

t
dj,k{rk
di,k{rk

u ¨

řm
k“1 di,k{rk

řm
k“1 dj,k{rk

ă

min
1ďkďm

t
dj,k{rk
di,k{rk

u ¨

řm
k“1 di,k{rk

min1ďkďmt
dj,k{rk
di,k{rk

u ¨
řm
k“1 di,k{rk

“ 1.

Hence, we have εipUjq ă εjpUjq according to Formula (27).
Similarly, it follows that εjpUiq ă εipUiq. Then after swapping
the resource allocation, we have εipUjq ` εjpUiq ă εipUiq `

εjpUjq, which violates the efficiency maximization requirement
in Section 4.1 of the main file and hereby the assumption is
false.

Finally, according to Case 1 and 2, we now can safely make
the conclusion that QKnober policy is envy-freeness.

APPENDIX D
PROOF OF THEOREM 4

Proof: We prove this theorem by contradiction to suppose
that the resulting allocation U “ xU1, ¨ ¨ ¨,Uny of QKnober is not
pareto efficient. Then there must exist an alternative allocation
Ŭ “ xŬ1, ¨ ¨ ¨, Ŭny such that NipUiq ď NipŬiq for @i P r1,ms
and Dj P r1,ms, NipUjq ă NjpŬjq. Similar to DRF mentioned
in Section 4.1 of the main file, QKnober follows the progressive
filling and the allocation terminates when at least one resource
is saturated. It means that for the allocation U of QKnober, it
holds

max
1ďkďm

t

n
ÿ

i“1

ui,k
rk
u “ max

1ďkďm
t

n
ÿ

i“1

NipUiq ¨ di,k
rk

u “ 1.

Thus,

max
1ďkďm

t

n
ÿ

i“1

NipŬiq ¨ di,k
rk

u ą max
1ďkďm

t

n
ÿ

i“1

NipUiq ¨ di,k
rk

u “ 1.

which is not a feasible allocation and indicates that the assump-
tion does not hold. Therefore, QKnober is pareto efficient.

APPENDIX E
DISCRETE RESOURCE ALLOCATION

In the previous section, we have implicitly assumed one ‘super-
computer’ with all big resources that can be allocated in arbi-
trarily small units. However, in practice, it is more likely to have
a data center cluster consisting of many small computing nodes,
which are allocated to tasks in discrete amounts. We refer to
these two scenarios as the continuous, and the discrete scenario,

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING 3

respectively. We now take a look at how fairness is affected in
the discrete scenario.

Consider a cluster consisting of K computing nodes, where
the resource capacity of the ith machine is Ri “ xri,1, ¨ ¨ ¨, ri,my
and R “

ř

1ďiďK Ri. We assume that any task can be scheduled
on every computing node. We further assume that each user has
strictly positive demands. With these assumptions, we have the
following conclusion,

Theorem 1: In the discrete scenario, QKnober is a θ-soft
fairness policy where the difference between the allocations of
any two users is bounded by

θ “

$

’

’

’

’

’

&

’

’

’

’

’

%

max1ďi
1
ďn

max1ďkďm d
i
1
,k
{rk

w
i
1

`

max1ďiďnt
max1ďkďn di,k{rk

max1ďkďm
wi¨di,k

rk´ρ¨
řn
j“1

NkpU
max
k

q¨dj,k

u, p0 ď ρ ă 1q.

max1ďi
1
ďn

max1ďkďm d
i
1
,k
{rk

w
i
1

. pρ “ 1q

Proof: In Section 4.2.1 of the main file, we have theoret-
ically shown that QKnober can guarantee s̄i “ smax

i ¨ ρ soft
fairness in the fairness-oriented allocation under the continuous
scenario by assuming the number of tasks can be partial value
and one supercomputer containing all computing resources.
However, in the discrete scenario, both task number and machine
number are discrete integer, indicating that it is hard or even
impossible to achieve the exact value of smax

i ¨ρ soft fairness in
its fairness-oriented allocation. Instead, we can seek to guarantee
a soft fairness s̄i in the fairness-oriented allocation under the
discrete scenario satisfying that

smaxi ¨ ρ ď s̄i ď smaxi ¨ ρ` max
1ďi

1
ďn

t max
1ďkďm

di1 ,k{rku. p30q

for each user i. Hence it holds,

0 ď |
s̄i
wi
´
s̄j
wj
| ď max

1ďi1ďn

max1ďkďm di1 ,k{rk

wi1
.

Case #1: When ρ “ 1, the system performs pure fairness
allocation only for the whole cluster resources. In that case, s

1

i “

0 for @i P r1, ns. Then

|
si
wi
´
sj
wj
| ď max

1ďi,jďn
t|
si
wi
´
sj
wj
|u

ď max
1ďi,jďn

t|p
s̄i
wi
´
s̄j
wj
q ` p

s
1

i

wi
´
s
1

j

wj
q|u

ď max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1

Case #2: When 0 ď ρ ă 1, for any two users i, j P r1, ns that

|
si
wi
´
sj
wj
| ď max

1ďi,jďn
t|
si
wi
´
sj
wj
|u

“ max
1ďi,jďn

t|p
s̄i
wi
´
s̄j
wj
q ` p

s
1

i

wi
´
s
1

j

wj
q|u

ď max
1ďi,jďn

t|
s̄i
wi
´
s̄j
wj
|u ` max

1ďi,jďn
t|
s
1

i

wi
´
s
1

j

wj
|u p31q

ď max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
` max

1ďi,jďn
t|
s
1

i

wi
´
s
1

j

wj
|u

“ max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
` max

1ďiďn

s
1

i

wi
´ min

1ďjďn

s
1

j

wj

“ max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
` max

1ďiďn
t

U
1

i

Di ¨ wi
¨ max
1ďkďm

t
di,k
rk
uu

´ min
1ďjďn

t
U
1

j

Dj ¨ wj
¨ max
1ďkďm

t
dj,k
rk
uu

In terms of the soft fairness definition, our proof aims to find

an upper bound for Formula (31). Let η “ max1ďiďnt
U
1

i

Di¨wi ¨

max1ďkďmt
di,k
rk
uu ´min1ďjďnt

U
1

j

Dj ¨wj ¨max1ďkďmt
dj,k
rk
u. It is

equivalent to seeking for an upper bound for η in the efficiency-
oriented allocation.

According to Formula (30), the upper bound of R
1

idle
resources for efficiency-oriented allocation occurs when s̄i “
smax
i ¨ ρ given the total resource capacity R. Moreover, in the

efficiency allocation, the maximum value of η is achieved when
a user i possesses all idle resources R

1

and other users have no
resource allocations (i.e., @j ‰ i P r1, ns,U

1

j “ 0). In this case,

we have η “ max1ďiďnt
U
1

i

Di¨wi ¨max1ďkďmt
di,k
rk
uu. Moreover, in

the discrete scenario, the maximum value of η in the efficiency-
oriented allocation cannot be larger than that in the continuous
scenario. Thereby, we have

U
1

i ď
Di

max1ďkďmt
di,k

r
1

k

u
“

Di
max1ďkďm

di,k
rk´ρ¨

řn
j“1 NkpU

max
k q¨dj,k

.

p32q

in the discrete scenario by modifying Formula (20). Then, it
holds

η “ max
1ďiďn

t
U
1

i

Di ¨ wi
¨ max
1ďkďm

t
di,k
rk
uu

ď max
1ďiďn

t
max1ďkďn di,k{rk

max1ďkďm
wi¨di,k

rk´ρ¨
řn
j“1 NkpU

max
k

q¨dj,k

u

Therefore, the upper bound θ for Formula(31) is

|
si
wi
´
sj
wj
| ď max

1ďi
1
ďn

max1ďkďm di1 ,k{rk

wi1
` η

ď max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
`

max
1ďiďn

t
max1ďkďn di,k{rk

max1ďkďm
wi¨di,k

rk´ρ¨
řn
j“1 NkpU

max
k

q¨dj,k

u

APPENDIX F
OVERHEAD EVALUATION

Recall from our system implementation in Section 6.2 that
the task scheduling logic (e.g., fairness-oriented allocation plus

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING 4

0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(m

s)

Scheduling Policy

NM heartbeat AM heartbeat

Fig. 1: The average processing time (overheads) to handle heartbeats
from the NM and AM for DRF and QKnober.

efficiency-oriented allocation) of QKnober is more complicated
than that in YARN. This section evaluates the computational
overhead of QKnober with the aforementioned four workloads
under different knob configurations. Specifically, we consider
the time taken by the Resource Manager (RM) to deal with a
heartbeat request from the Node Manager (NM) and from the
Application Master (AM). In YARN, the RM performs the actual
resource allocation during the NM heartbeat. AM is responsible
for asking RM for resource allocation. At an AM ask heartbeat,
the RM updates the accumulative asks from the AM and reacts
with any tasks in the past asks that have been satisfied in the
NM heartbeat.

Figure 1 presents the overhead results for DRF and QKnober
to process heartbeats from the NM and AM under different knob
values, respectively. It shows that the heartbeats processing time
for both NM and AM is minor compared with the Hadoop work-
loads that often takes hours or days to complete [32]. Second,
QKnober performs heartbeats a bit slower than DRF. This is
because QKnober has more complex task scheduling mechanism
than DRF. Third, for QKnober, the heartbeats processing time is
much close under different knob configurations. It indicates that
the knob configuration has no too much impact on the overhead
contribution.

ACKNOWLEDGEMENT
This work is sponsored by the National Natural Science Foun-
dation of China (61972277) and Tianjin Natural Science Foun-
dation (18JCZDJC30800). Ce Yu is supported by the Joint
Research Fund in Astronomy (U1731243, U1931130) under
cooperative agreement between the National Natural Science
Foundation of China (NSFC) and Chinese Academy of Sciences
(CAS).

REFERENCES
[1] Apache hive performance benchmarks. In https://issues.

apache.org/jira/browse/HIVE-396, 2009.
[2] Apache tpc-h benchmark on hive. In https://issues.

apache.org/jira/browse/HIVE-600, 2009.
[3] Facebook workload traces. In https://github.com/SWIMProjectUCB/

SWIM/wiki/Workloads-repository., 2009.
[4] Google cluster data. In https://code.google.com/p/googleclusterdata/, 2011.
[5] Glpk (gnu linear programming kit). In https://www.gnu.org/software/glpk/,

2012.
[6] Puma datasets. In http://web.ics.purdue.edu/f̃ahmad/datasets.htm., 2012.
[7] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and T. N. Vijaykumar.

Puma: Purdue mapreduce benchmarks suite. In ECE Technical Reports,
2012.

[8] Arka A. Bhattacharya, David Culler, Eric Friedman, Ali Ghodsi, Scott
Shenker, and Ion Stoica. Hierarchical scheduling for diverse datacenter
workloads. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 4:1–4:15, New York, NY, USA, 2013. ACM.

[9] R. P. Brent. Efficient implementation of the first-fit strategy for dynamic
storage allocation. ACM Trans. Program. Lang. Syst., 11(3):388–403, July
1989.

[10] Paul C Chu and John E Beasley. A genetic algorithm for the multidimen-
sional knapsack problem. Journal of heuristics, 4(1):63–86, 1998.

[11] E. Danna, S. Mandal, and A. Singh. A practical algorithm for balancing
the max-min fairness and throughput objectives in traffic engineering. In
INFOCOM’12, pages 846–854, March 2012.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. In OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.
USENIX Association.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data process-
ing on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[14] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient
and qos-aware cluster management. In ASPLOS ’14, pages 127–144, New
York, NY, USA, 2014. ACM.

[15] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman,
and Nathan Linial. No justified complaints: On fair sharing of multiple
resources. In ITCS ’12, pages 68–75, NY, USA, 2012. ACM.

[16] Lars George. HBase: the definitive guide. ” O’Reilly Media, Inc.”, 2011.
[17] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-resource

fair queueing for packet processing. In SIGCOMM ’12, pages 1–12, NY,
USA, 2012. ACM.

[18] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. Dominant resource fairness: Fair allocation of
multiple resource types. In NSDI’11, pages 323–336, Berkeley, CA, USA,
2011. USENIX Association.

[19] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao,
and Aditya Akella. Multi-resource packing for cluster schedulers. In
SIGCOMM’14, pages 455–466. ACM, 2014.

[20] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A
platform for fine-grained resource sharing in the data center. In NSDI’11,
pages 295–308, Berkeley, CA, USA, 2011. USENIX Association.

[21] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang. Multire-
source allocation: Fairness-efficiency tradeoffs in a unifying framework.
IEEE/ACM Trans. Netw., 21(6):1785–1798, December 2013.

[22] Ian Kash, Ariel D. Procaccia, and Nisarg Shah. No agent left behind:
Dynamic fair division of multiple resources. In AAMAS ’13, pages 351–
358, 2013.

[23] Haikun Liu and Bingsheng He. Reciprocal resource fairness: Towards
cooperative multiple-resource fair sharing in iaas clouds. In SC ’14, pages
970–981, Piscataway, NJ, USA, 2014. IEEE Press.

[24] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond dominant
resource fairness: Extensions, limitations, and indivisibilities. ACM Trans.
Econ. Comput., 3(1):3:1–3:22, March 2015.

[25] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In SoCC ’12, pages 7:1–7:13. ACM, 2012.

[26] S. Tang, Z. Niu, B. He, B. Lee, and C. Yu. Long-term multi-resource
fairness for pay-as-you use computing systems. IEEE Transactions on
Parallel and Distributed Systems, 29(5):1147–1160, 2018.

[27] Shanjiang Tang, Qifei Chai, Ce Yu, Yusen Li, and Chao Sun. Balancing
fairness and efficiency for cache sharing in semi-external memory system.
2020.

[28] Shanjiang Tang, BingSheng He, Shuhao Zhang, and Zhaojie Niu. Elastic
multi-resource fairness: Balancing fairness and efficiency in coupled cpu-
gpu architectures. In SC ’16, pages 75:1–75:12. IEEE Press, 2016.

[29] Shanjiang Tang, Ce Yu, Chao Sun, Jian Xiao, and Yinglong Li. Qknober:
A knob-based fairness-efficiency scheduler for cloud computing with qos
guarantees. In Claus Pahl, Maja Vukovic, Jianwei Yin, and Qi Yu, editors,
Service-Oriented Computing, pages 837–853, Cham, 2018.

[30] A. Thusoo, J.S. Sarma, N. Jain, Zheng Shao, P. Chakka, Ning Zhang,
S. Antony, Hao Liu, and R. Murthy. Hive - a petabyte scale data warehouse
using hadoop. In ICDE’10, pages 996–1005, March 2010.

[31] Hal R Varian. Equity, envy, and efficiency. Journal of economic theory,
9(1):63–91, 1974.

[32] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, and Lowe. Apache hadoop
yarn: Yet another resource negotiator. In SOCC ’13, pages 5:1–5:16, New
York, NY, USA, 2013. ACM.

MANUSCRIPT TO BE SUBMITTED TO IEEE TRANSACTIONS ON CLOUD COMPUTING 5

[33] Hui Wang and Peter Varman. Balancing fairness and efficiency in tiered
storage systems with bottleneck-aware allocation. In FAST’14, pages 229–
242, Berkeley, CA, USA, 2014. USENIX Association.

[34] Wei Wang, Chen Feng, Baochun Li, and Ben Liang. On the fairness-
efficiency tradeoff for packet processing with multiple resources. In
CoNEXT ’14, pages 235–248, New York, NY, USA, 2014. ACM.

[35] Wei Wang, Baochun Li, and Ben Liang. Dominant resource fairness in
cloud computing systems with heterogeneous servers. In INFOCOM, 2014
Proceedings IEEE, pages 583–591, April 2014.

[36] Wei Wang, Baochun Li, Ben Liang, and Jun Li. Multi-resource fair sharing
for datacenter jobs with placement constraints. In SC ’16, pages 86:1–
86:12, Piscataway, NJ, USA, 2016. IEEE Press.

[37] Wei Wang, Shiyao Ma, Bo Li, and Baochun Li. Coflex: Navigating the
fairness-efficiency tradeoff for coflow scheduling. In INFOCOM’17.

[38] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy,
Scott Shenker, and Ion Stoica. Delay scheduling: A simple technique for
achieving locality and fairness in cluster scheduling. In EuroSys’10, pages
265–278, New York, NY, USA, 2010. ACM.

[39] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: cluster computing with working sets. In Hot
Cloud’10, volume 10, page 10, 2010.

[40] Seyed Majid Zahedi and Benjamin C. Lee. Ref: Resource elasticity fairness
with sharing incentives for multiprocessors. In ASPLOS ’14, pages 145–
160. ACM, 2014.

