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Fairness-Efficiency Scheduling for Cloud
Computing with Soft Fairness Guarantees

Shanjiang Tang, Ce Yu, Yusen Li

Abstract—Fairness and efficiency are two important metrics for users in modern data center computing system. Due to the heterogeneous
resource demands of CPU, memory, and network I/O for users’ tasks, it cannot achieve the strict 100% fairness and the maximum efficiency
at the same time. Existing fairness-efficiency schedulers (e.g., Tetris) can balance such a tradeoff elastically by relaxing fairness constraint
for improved efficiency using the knob. However, their approaches are unaware of fairness degradation under different knob configurations,
which makes several drawbacks. First, it cannot tell how much relaxed fairness can be guaranteed given a knob value. Second, it fails
to meet several essential properties such as sharing incentive. To address these issues, we propose a new fairness-efficiency scheduler,
QKnober, to balance the fairness and efficiency elastically and flexibly using a tunable fairness knob. QKnober is a fairness-sensitive
scheduler that can maximize the system efficiency while guaranteeing the θ-soft fairness by modeling the whole allocation as a combination
of fairness-oriented allocation and efficiency-oriented allocation. Moreover, QKnober satisfies fairness properties of sharing incentive, envy-
freeness and pareto efficiency given a proper knob value. We have implemented QKnober in YARN and evaluated it using both testbed and
simulated experiments. The results show that QKnober can achieve good performance and fairness.

Index Terms—Multi-Resource Allocation, Fairness, Efficiency, Hadoop
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Proof: For any two users i, j P r1, ns, we have
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Case #1: When ρ “ 1, we have s
1

i “ 0 for @i P r1, ns
discussed in Section 4.2.1 of the main file. In that case, it holds
| siwi

´
sj
wj
| “ 0 for any user i, j P r1, ns.

Case #2: When 0 ď ρ ă 1, according to the soft fairness defi-
nition, our proof turns to be seeking for an upper bound θ such
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Additionally, for all feasible allocations, the maximum value of
U
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i exists for user i when it possesses all the resource capacity
vector R

1

exclusively. In that case, all other users have no
resource allocations, i.e., @j ‰ i P r1, ns,U
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j “ 0. We then
get the maximum value of U
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i according to Formula (5) and (19)
as follows:
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The upper bound θ of Formula (18) for all feasible allocations
can then be computed, i.e.,
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Proof: Let’s start with the exclusively non-sharing case,
where each user i schedules tasks under its own partition of the
system resource, i.e., wi

řn
j“1 wj

R. In this case, the allocation stops
when at least one resource is saturated, i.e., max1ďkďmtdi,k ¨
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qu “ 1 for each user i. Therefore,
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Now we consider the sharing case for each user i. According to
Formula (8), (14) and (11), we have
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APPENDIX C
PROOF OF THEOREM 3

Proof: By contradiction, let’s assume that user i envies the
allocation result of user j under QKnober allocation policy. Then
for user i, it must have

NipUiq ă NipUjq. p21q

We consider the following two cases:
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According to Formula (6), there are
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According to Formula (28) and (29), we have
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Hence, we have εipUjq ă εjpUjq according to Formula (27).
Similarly, it follows that εjpUiq ă εipUiq. Then after swapping
the resource allocation, we have εipUjq ` εjpUiq ă εipUiq `

εjpUjq, which violates the efficiency maximization requirement
in Section 4.1 of the main file and hereby the assumption is
false.

Finally, according to Case 1 and 2, we now can safely make
the conclusion that QKnober policy is envy-freeness.
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Proof: We prove this theorem by contradiction to suppose
that the resulting allocation U “ xU1, ¨ ¨ ¨,Uny of QKnober is not
pareto efficient. Then there must exist an alternative allocation
Ŭ “ xŬ1, ¨ ¨ ¨, Ŭny such that NipUiq ď NipŬiq for @i P r1,ms
and Dj P r1,ms, NipUjq ă NjpŬjq. Similar to DRF mentioned
in Section 4.1 of the main file, QKnober follows the progressive
filling and the allocation terminates when at least one resource
is saturated. It means that for the allocation U of QKnober, it
holds
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which is not a feasible allocation and indicates that the assump-
tion does not hold. Therefore, QKnober is pareto efficient.

APPENDIX E
DISCRETE RESOURCE ALLOCATION

In the previous section, we have implicitly assumed one ‘super-
computer’ with all big resources that can be allocated in arbi-
trarily small units. However, in practice, it is more likely to have
a data center cluster consisting of many small computing nodes,
which are allocated to tasks in discrete amounts. We refer to
these two scenarios as the continuous, and the discrete scenario,
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respectively. We now take a look at how fairness is affected in
the discrete scenario.

Consider a cluster consisting of K computing nodes, where
the resource capacity of the ith machine is Ri “ xri,1, ¨ ¨ ¨, ri,my
and R “

ř

1ďiďK Ri. We assume that any task can be scheduled
on every computing node. We further assume that each user has
strictly positive demands. With these assumptions, we have the
following conclusion,

Theorem 1: In the discrete scenario, QKnober is a θ-soft
fairness policy where the difference between the allocations of
any two users is bounded by
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Proof: In Section 4.2.1 of the main file, we have theoret-
ically shown that QKnober can guarantee s̄i “ smax

i ¨ ρ soft
fairness in the fairness-oriented allocation under the continuous
scenario by assuming the number of tasks can be partial value
and one supercomputer containing all computing resources.
However, in the discrete scenario, both task number and machine
number are discrete integer, indicating that it is hard or even
impossible to achieve the exact value of smax

i ¨ρ soft fairness in
its fairness-oriented allocation. Instead, we can seek to guarantee
a soft fairness s̄i in the fairness-oriented allocation under the
discrete scenario satisfying that

smaxi ¨ ρ ď s̄i ď smaxi ¨ ρ` max
1ďi

1
ďn

t max
1ďkďm

di1 ,k{rku. p30q

for each user i. Hence it holds,
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allocation only for the whole cluster resources. In that case, s
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Case #2: When 0 ď ρ ă 1, for any two users i, j P r1, ns that

|
si
wi
´
sj
wj
| ď max

1ďi,jďn
t|
si
wi
´
sj
wj
|u

“ max
1ďi,jďn

t|p
s̄i
wi
´
s̄j
wj
q ` p

s
1

i

wi
´
s
1

j

wj
q|u

ď max
1ďi,jďn

t|
s̄i
wi
´
s̄j
wj
|u ` max

1ďi,jďn
t|
s
1

i

wi
´
s
1

j

wj
|u p31q

ď max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
` max

1ďi,jďn
t|
s
1

i

wi
´
s
1

j

wj
|u

“ max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
` max

1ďiďn

s
1

i

wi
´ min

1ďjďn

s
1

j

wj

“ max
1ďi

1
ďn

max1ďkďm di1 ,k{rk

wi1
` max

1ďiďn
t

U
1

i

Di ¨ wi
¨ max
1ďkďm

t
di,k
rk
uu

´ min
1ďjďn

t
U
1

j

Dj ¨ wj
¨ max
1ďkďm

t
dj,k
rk
uu

In terms of the soft fairness definition, our proof aims to find
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in the discrete scenario by modifying Formula (20). Then, it
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Therefore, the upper bound θ for Formula(31) is
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APPENDIX F
OVERHEAD EVALUATION

Recall from our system implementation in Section 6.2 that
the task scheduling logic (e.g., fairness-oriented allocation plus
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Fig. 1: The average processing time (overheads) to handle heartbeats
from the NM and AM for DRF and QKnober.

efficiency-oriented allocation) of QKnober is more complicated
than that in YARN. This section evaluates the computational
overhead of QKnober with the aforementioned four workloads
under different knob configurations. Specifically, we consider
the time taken by the Resource Manager (RM) to deal with a
heartbeat request from the Node Manager (NM) and from the
Application Master (AM). In YARN, the RM performs the actual
resource allocation during the NM heartbeat. AM is responsible
for asking RM for resource allocation. At an AM ask heartbeat,
the RM updates the accumulative asks from the AM and reacts
with any tasks in the past asks that have been satisfied in the
NM heartbeat.

Figure 1 presents the overhead results for DRF and QKnober
to process heartbeats from the NM and AM under different knob
values, respectively. It shows that the heartbeats processing time
for both NM and AM is minor compared with the Hadoop work-
loads that often takes hours or days to complete [32]. Second,
QKnober performs heartbeats a bit slower than DRF. This is
because QKnober has more complex task scheduling mechanism
than DRF. Third, for QKnober, the heartbeats processing time is
much close under different knob configurations. It indicates that
the knob configuration has no too much impact on the overhead
contribution.
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