
Long-Term Multi-Resource Fairness for
Pay-as-you Use Computing Systems

Shanjiang Tang , Zhaojie Niu , Bingsheng He, Bu-Sung Lee, and Ce Yu

Abstract—Many current computing systems such as clouds and supercomputers charge users for their resource usages. A user’s

demand is often changing over time, indicating that it is difficult to keep the high resource utilization all the time for cost efficiency.

Resource sharing is a classical and effective approach for high resource utilization. In view of the heterogeneous resource demands of

users’ workloads, multi-resource allocation fairness is a must for resource sharing in such pay-as-you-use computing systems.

However, we find that, existing multi-resource fair policies such as Dominant Resource Fairness (DRF), implemented in currently

popular resource management systems such as Apache YARN [4] and Mesos [23], are not suitable for the pay-as-you-use computing

systems. We show that this is because of theirmemoryless characteristic that can cause the following problems in the pay-as-you-use

computing systems: 1). users can get resource benefits by cheating; 2). users might not be able to get the total amount of resources

that they are entitled to in terms of their resource contributions. In this paper, we propose a new policy called H-MRF, which generalizes

DRF and Asset Fairness with the long-term notion. We show that it can address these problems and is suitable for pay-as-you-use

computing systems. We have implemented it into YARN by developing a prototype calledMRYARN. Finally, we evaluate H-MRF using

both testbed and simulated experiments. The experimental results show that there are about 1:1 � 1:5 sharing benefit degrees and

1:2� � 1:8� performance improvement for users with H-MRF, better than existing fair schedulers.

Index Terms—Long-term multi-resource fairness, cloud computing, supercomputing, YARN, MRYARN

Ç

1 INTRODUCTION

CURRENT Clouds (e.g., Amazon EC2,Microsoft Azue) and
supercomputers (e.g., Blue Waters [5], Comet [6] and

Gordon [10]) are typically composed of thousands of compute
nodes connected via a high-speed network. Both of them are
pay-as-you-use computing systems that charge users according
to the length of their jobs’ execution and the number of com-
pute nodes that they request [15]. Various pricing schemes
(such as on-demand pricing, reservation, and auction) have
been proposed, and new pricing schemes are likely to be
introduced in the future [12].

Resource utilization is a key design issue for both users
and resources providers [15], [32] to achieve high perfor-
mance and cost efficiency. However, the fact is that the
resource utilization of current computing systems is far
from ideal. Delimitrou et al. [17] had an analysis of Twitter
production cluster over one month. However, they showed
that the majority of servers (e.g., 80 percent servers) are
below 20 percent utilization.

Regarding the low resource utilization, another observa-
tion is that the resource demands of submitted tasks are
often heterogeneous, as more diversified workloads including
big data are being deployed and run on the computing sys-
tems. In Fig. 1, it shows a resource usage profile of tasks
from Google in a data center of 12 thousands of machines
based on the Google trace [8] over about a month-long
period (May 2011). The position of a circle indicates the
CPU and memory resources consumed by tasks. The size of
a circle is logarithmic to the number of tasks in the region of
the circle. It shows that there are significantly varied
demands for tasks on CPU and memory resources, which
can cause unbalanced utilization and fragmentation on indi-
vidual resource types. Thus, to efficiently allocate resources
and satisfy heterogeneous resource requirements, we need
to consider multi-resource allocation that takes multiple
resource types into account [20].

Resource sharing is a classical and effective approach for
high resource utilization [20]. It is based on the observations
that 1). different users often have different resource demands;
2). even for an individual user, her demand is changing over
time. Resource sharing can thereby achieve a better utiliza-
tion than the non-sharing case by allowing overloaded users
to utilize unused resources from underloaded users. To
achieve resource sharing in a pay-as-you-use computing sys-
tem, users can contribute their requested computing nodes to
the resource pool and share with each other by using existing
resource management systems such as Mesos and YARN.
Fairness is an important system issue in resource sharing [31].
Only when the fairness is guaranteed for users, the resource
sharing can be possible in multi-resource allocation.We have

� S. Tang and C. Yu are with the School of Computer Science & Technology,
TianjinUniversity, Tianjin 300350, China. E-mail: {tashj, yuce}@tju.edu.cn.

� Z. Niu and B. He are with the School of Computing, National University
of Singapore, Singapore 119077.
E-mail: nzjemail@gmail.com, hebs@comp.nus.edu.sg.

� B.-S. Lee is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798.
E-mail: ebslee@ntu.edu.sg.

Manuscript received 20 June 2017; revised 19 Oct. 2017; accepted 25 Dec.
2017. Date of publication 1 Jan. 2018; date of current version 6 Apr. 2018.
(Corresponding author: Shanjiang Tang.)
Recommended for acceptance by Y. Lu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2788880

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018 1147

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

identified the following good properties that a fair multi-
resource allocation policy in a shared pay-as-you-use comput-
ing system should satisfy:

� All users should be better off in shared resource allocation
than under an exclusively non-sharing environment.
(sharing incentive)

� Cheating users should not get resource benefits by misre-
porting their resource demands. (truthfulness)

� It is not possible to increase the allocation of a user with-
out decreasing the allocation of at least one user. (Pareto
Efficiency)

� The aggregate accumulated resource usage1 of multi-
resource types used by users should be proportional to
their resource contributions over time. (resource-as-you-
contributed fairness)

Dominant Resource Fairness (DRF) [20] is one of the most
popular multi-resource allocation policies. It has been
widely used in existing systems such as Mesos and YARN.
DRF was originally designed for a traditional cluster envi-
ronment where the computing resources are provided by a
third-party instead of users [20]. When it comes to the pay-
as-you-use computing system, unfortunately, we show that
it fails to meet some of the above requirements (See details
in Section 3.2), due to its ‘memoryless’ allocation feature (i.e.,
allocating resources fairly at the instant time without con-
sidering historical allocations). It indicates that DRF is not
suitable for pay-as-you-use computing.

Therefore, we investigate a fair resourcemanagement pol-
icy for the pay-as-you-use computing system. By analyzing
problems of existing multi-resource allocation policies, we
attempt to explore a multi-resource allocation policy by
extending the existing memoryless policies with the long-
termnotion so that the historical resource allocations are con-
sidered. However, enabling multi-resource allocation to sat-
isfy all of the aforementioned requirements is challenging.
Particularly, it can be a non-trivial task to define and ensure
resource-as-you-contributed fairness in the case of multiple
types of resources. As wewill show (in Section 5.1), the naive
extension of DRF with the long-term notion (Attempt 1 in
Section 5.1) cannot achieve the resource-as-you-contributed

fairness, since only the dominant resource is considered.
We also attempt to extend another popular fairness policy
(Asset Fairness) with the long-term notion (Attempt 2 in
Section 5.2), where resources of all types are considered.
Unfortunately, we show that it also fails to satisfy sharing
incentive property.

In this paper, by observing that the two attempts are
complementary with each other, we propose a multi-
resource allocation policy, called H-MRF for the pay-as-
you-use computing system, by generalizing DRF and Asset
Fairness [20] with the long-term notion. H-MRF ensures
that each user in the pay-as-you-use computing system can
at least get the amount of total resources as that under the
exclusively non-sharing environment in the long-term view.
Moreover, H-MRF can guarantee that no users can get a
larger amount of total allocated resources over time by lying
about their demands.

We have implemented our H-MRF policy in Apache
YARN [4], an emerging open-source system infrastructure,
and developed a prototype namedMRYARN.2We have used
two complementary methods to evaluate the effectiveness of
our proposed approach: real experiments in a Amazon EC2
cluster and trace-driven simulations. The experimental results
in the Amazon EC2 cluster show that, MRYARN can achieve
sharing benefit for each user in the pay-as-you-use computing
system, better than other baseline policies (e.g., DRF and the
two attempts). Second, resource sharing with MRYARN
can achieve higher resource utilization and better perfor-
mance than exclusively non-sharing computation. Moreover,
MRYARN outperforms other baseline policies in perfor-
mance due to its efficient task placement in reducing
machines’ fragmentation. In addition, we also conduct a sim-
ulation-based experiment at a large scale with Google cluster-
usage traces. The simulation results are consistentwith that of
MRYARN. Third, users under H-MRF can achieve the lowest
monetary cost payment compared with other policies (e.g.,
DRF) in the shared pay-as-you-use computing system.

The rest of the paper is organized as follows. Section 2
presents some desirable allocation properties for pay-as-
you-use computing systems. Section 3 introduces the back-
ground and gives the motivations for our work. We give a
multi-resource fairness definition in Section 4. Section 5 pro-
poses and analyzes our long-term multi-resource fairness
polices. Section 6 gives the implementation of H-MRF policy
in YARN. The experimental evaluation is given in Section 7.
We review the related work in Section 8. Finally, Section 9
concludes the paper.

2 DESIRABLE ALLOCATION PROPERTIES

We present several allocation properties that are essential
and desirable for resource allocation policies in the shared
pay-as-you-use computing system, whose compute nodes
are contributed by different users.

Sharing Incentive. Each user should be better off sharing
resources, than exclusively using her own partition of
resources. Only this, users are willing to share their resour-
ces with others actively. This property is non-trivial as it is a

Fig. 1. Heterogeneous resource demands for tasks from google traces [8].

1. Aggregate accumulated resource usage refers to the aggregation
of accumulated resources of multiple resource types over time.
For example, assume that one CPU is worth one GB memory (See
Section 3.3). If there is a multi-resource allocation of < 2 CPUs, 10
GB> lasting for 60 seconds, then the value of aggregate accumulated
resource is 2� 60þ 10� 60 ¼ 720.

2. The source code of MRYARN: https://sourceforge.net/projects/
mryarn/

1148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

service-level agreement (SLA) guarantee of resource alloca-
tion for users in the pay-as-you-use computing system.

Resource-as-you-Contributed Fairness. In the shared pay-as-
you-use computing system, assume that each user contrib-
utes a certain number of machines (resources) to the com-
mon pool of machines (resources) in one period. Then, the
aggregate accumulated resource usages of multi-resource
types that each user used should be proportional to her
resource contribution in the shared environment over time.
For example, if there is a shared 100 nodes computing sys-
tem for which User A contributes 20 nodes and User B
contributes 80 nodes, then the resource-as-you-contributed
fairness is guaranteed when the ratio of the aggregate
accumulated resource of multi-resource types for User A
to B is 20

80.

Truthfulness. Any user in the system should not be able to
get resource benefits by lying about her resource demands.
This property is essentially important for a pay-as-you-use
computing system, as in real-world systems, users may try
to manipulate the schedulers for more allocation by lying
about their resource demands [20], [21], [36].

Pareto Efficiency. An allocation policy is pareto efficiency
if it is impossible to increase the allocation of a user without
decreasing the allocation of at least one user. This property
is critical for high resource utilization.

3 BACKGROUND AND MOTIVATION

In this section, we start by reviewing some background of
accounting and allocation models on current clouds and
supercomputers, and present our work settings. Next we
describe existing memoryless multi-resource fairness poli-
cies, including DRF and Asset Fairness, and motivate our
work by showing their problems.

3.1 Accounting Models on Clouds and
Supercomputers

For the sake of better understanding why resource-as-you-
contributed fairness is so important for pay-as-you-use
computing systems, we can take a look at accounting and
allocation models in cloud computing and supercomputing,
respectively.

Cloud Computing. The cloud resources/services are
offered to users on the basis of pay-as-you-use business
model. Users pay for compute resources by per second (i.e.,
billed on one second increments, with a 60 second mini-
mum) or by per hour billing (i.e., less than hour will be
automatically rounded to an hour) depending on which
instances users run. To meet different users’ needs of big
data applications, cloud providers generally offer several
options of pricing schemes. For example, Amazon EC2 pro-
vides users with three pricing schemes, i.e., on-demand
pricing, reservation pricing and spot(auction) pricing. For
on-demand instance, its price is fixed and a bit higher than
that of reservation instance. In contrast, for reservation
instance, its cost consists of two parts. One part is the upfront
cost. The other part is the discounted hourly-based cost. It is
always guaranteed to be available whenever a user requests
it. For spot instance, its price varies over time, which is often
much lower than on-demand and reservation instances.
However, it is not always available for requesting.

Supercomputing. Most current supercomputers such as
Blue Waters [5], Comet [6] and Gordon [10] are supported by
National Science Foundation (NSF). To utilize current sys-
tems, users need first submit grant proposals to NSF for
review and then obtain awarded time as a finite number of
Service Unit (SU). When a job of a user is running on a sys-
tem, it consumes the user’s bank of SUs at a rate that is pro-
portional to the job’ execution time and the number of
compute nodes requested by that user [15]. Notably, lots of
users’ submitted workloads are big data applications (e.g.,
data-centric climate simulation [38], fluid dynamics simula-
tion [29]), which often take hours or days to finish.

Given those long running applications, to achieve the full
cost savings on either of the above two computing systems,
users must commit to have a high utilization for compute
nodes that they request. In practice, it is most likely that the
resource demand of a user is changing over time, implying
that it is hard to guarantee the resources to be fully utilized
all the time. As we have discussed in Section 1, resource
sharing is an effective approach to address it by allowing
overloaded users to utilize the unused resources contrib-
uted by underloaded users at runtime, and vice versa.

In this paper, let us consider a shared computing system
whose computing nodes are contributed and by n users,
where User i makes a contribution of Ki compute nodes
(whose pricing schemes can be the same or different across
users) to the resource pool. Moreover, we allow users to join
in the system at arbitrary time by contributing their comput-
ing nodes to the system dynamically. This resource alloca-
tionmodel in fact is similar to existing resource management
systems such as YARN. In exchange for the use of their com-
puting nodes, users often want to see something in return.
For example, an underloaded user who yields its unused
resources to others at the current moment often wants to get
more resources back when its demands become large in
future. That is, we should guarantee the proportional rela-
tionship between the amount of total resources a user used
over a period of time and the amount of resources contrib-
uted by the user to the system (i.e., resource-as-you-contrib-
uted fairness). In a nutshell, to enable resource sharing
sustainable for users in the long run, it is important to
explore a fair resource allocation policy for the pay-as-you-
use computing system that can meet all the aforementioned
good properties listed in Section 2.

3.2 Dominant Resource Fairness

Dominant Resource Fairness was recently proposed by [20]
for multi-resource allocations and has quickly attracted a
remarkable amount of attention [14], [26], [28], [36]. It intro-
duces the concept of a user’s dominant share, which is the
highest share of any typed resource that the user has been
allocated. The resource corresponding to the dominant share
is called dominant resource. Consider an example as follows:

Example 1. Consider a shared pay-as-you-use computing
system consisting of 100 CPUs and 100 GB memory in
total. It is contributed (paid for) by two users A and B
equally with the task requirement of < 1 CPU, 2 GB> for
A, and < 1 CPU, 1 GB> for B.

In Example 1, User A’s dominant resource is memory
because each task of A consumes 1=100 of the total CPUs

TANG ETAL.: LONG-TERM MULTI-RESOURCE FAIRNESS FOR PAY-AS-YOU USE COMPUTING SYSTEMS 1149

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

and 2=100 of the total memory. In contrast, for User B, both
CPU and memory are its dominant resources since each
task from B consumes 1=100 of the total CPUs and memory.

DRF achieves the multi-resource fairness by equalizing
the dominant shares across all users at the point of time con-
sidering resource allocation (i.e., memoryless). Consider the
previous example of Example 1, the resulting allocation will
be < 25 CPUs, 50 GB> for A and < 50 CPUs, 50 GB> for
B, making A and B receive the same dominant share of
50=100. DRF is based on an assumption that equal share
ratios of different typed resources are of equivalent value
(i.e., 1 percent of all CPUs worth is the same as 1 percent of
all memory), since it assumes fairwhen the dominant shares
across users are equal, no matter whether the respective
dominant resources are of the same type or not.

Problems of DRF. DRF was originally proposed by
Ghodsi et al. [20] for a traditional cluster environment of
which resources are free for users to utilize. Although there
are lots of good properties (e.g., sharing incentive, pareto
efficiency), we find that there are several problems for DRF
when it is applied to the computing system that charge
users for the use of computing resources.

Untruthfulness Problem. A robust policy should have
truthfulness property, which can prohibit cheating users
from getting benefits. In [20], the authors showed that DRF
satisfies the truthfulness property (i.e., strategy-proofness)
with an implicit assumption of unbounded numbers of tasks
for users at any time. However, this does not hold in prac-
tice, as the number of tasks per user is generally limited and
varying over time. Given a bounded number of tasks for
users, we show that DRF fails to meet the truthfulness prop-
erty when there are more than two users in the play game
through a three-user example as follows.

Example 2. Consider a shared pay-as-you-use computing
system consisting of 120 CPUs and 120 GB memory,
which is contributed (paid by) by three users A;B;C
equally. Assume that the task requirements for A;B and
C are < 1 CPU, 2 GB> , < 2 CPUs, 1 GB> and < 1 CPU,
4 GB> , respectively. Moreover, let us suppose that the
true numbers of tasks for A;B and C are 50, 10 and 10,
respectively. Then the true resource demands for A;B
and C are < 50 CPUs, 100 GB> , < 20 CPUs, 10 GB>
and < 10 CPUs, 40 GB> , respectively.

In Example 2, the resource share for each of A;B and C is
< 40 CPUs, 40 GB> . Suppose Users A and B are honest
users whereas C is an adversarial user. In that case, B has
< 20 CPUs, 30 GB> unused resources and it yields them to

others honestly. However, C can manipulate the scheduler
by submitting more than its true number of 10 tasks to com-
pete withA for the unused resources fromB. For example,C
can submit 4more backup tasks for the purpose of speculative
execution [41], which can improve its performance bymitigat-
ing the impact of straggled tasks. Based onDRF, the resulting
allocation is illustrated in Fig. 2b, where C gets < 14 CPUs,
56 GB> . In fact, if C is honest, she can only get < 10 CPUs,
40 GB> , as illustrated in Fig. 2a. Thus, User C gets < 4
CPUs, 16 GB> benefits for its speculative execution. Typi-
cally, if such a case (e.g., Fig. 2b) often takes place for C, it
will allow C to get more benefits over time. Therefore, DRF
violates truthfulness property in the long-term view.

Regarding this, the behind reason is that there is no pen-
alty for cheating users under DRF policy due to its memory-
less resource allocation property. Compared with the honest
case (Fig. 2a), lying can make users preempt more unused
resources (Fig. 2b) from underloaded users with no cost.

Example 3. Consider a shared pay-as-you-use computing
system with 100 CPUs and 100 GB memory contributed
(paid for) by two users A and B equally, where A runs
tasks with the demand vector of < 1 CPU, 4 GB> , and B
is with the demand vector of < 4 CPUs, 1 GB> per task.
Assume that at time t1; t2; t3 and t4, the numbers of new
submitting tasks for User A are 30, 20, 27 and 10, and for
User B are 4, 24, 8 and 30, respectively.

Resource-as-you-Contributed Unfairness Problem. As a ser-
vice level agreement, we should ensure that the total resour-
ces used by each user are proportional to her contribution
(i.e., resource-as-you-contributed fairness). However, due
to the fact that a user’s resource demands are varying over
time, we find that DRF fails to guarantee SLA. Let’s illus-
trate it with Example 3. With DRF, it will be fair for A and B
when each of them has 20 tasks allocated (i.e., < 20 CPUs,
80 GB> resources for A and < 80 CPUs, 20 GB> resources
for B). The resulting allocation based on DRF is given in
Table 1 a. At time t1, the number of tasks for B is 4. B con-
sumes < 16 CPUs, 4 GB> resources and its unused resour-
ces are yielded to A so that A has 24 tasks launched. Next at
time t2, the total number of pending tasks for B is 24, larger
than 20. However, due to memoryless of DRF, it can only
launch 20 tasks. The scenario is similar at t3; t4. It is unfair
for B since the total numbers of tasks scheduled for A and B
finally become 86ð¼ 24þ 20þ 22þ 20Þ and 56ð¼ 4þ 20 þ
12þ 20Þ at time t4, respectively. If this case often occurs, it
will be unfair for B to consume the amount of resources that
she should receive concerning her resource contribution
from a long-term perspective.

In contrast, as shown in Table 1b, if we adopt the long-
term multi-resource fairness (e.g., H-MRF) as we will intro-
duce in Section 5, the total allocations for A and B are finally
the same (e.g., 59), being fair for A and B at t4 from a long-
term point of view.

In summary, DRF cannot satisfy truthfulness and
resource-as-you-contributed fairness.

3.3 Asset Fairness (AF)

Besides DRF, there is another popular multi-resource fair
policy called Asset Fairness [20]. It achieves the fairness by
equalizing the aggregation results of all typed resources

Fig. 2. A counterexample showing that DRF is not truthfulness.

1150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

allocated to each user, with the same assumption as DRF
that equal shares of different typed resources are worth the
same value. Each time, it performs the fair allocation with
the max-min policy [9] by choosing the user with the mini-
mum aggregate resources.

Let us explain AF with Example 1. Since the number of
CPUs is equal to the GB units of memory (i.e., 100 CPUs
and 100 GB memory), we can assume that one GB memory
is worth one CPU. If one CPU and one GB memory are both
worth $1, User A costs $3 for each task, whereas User B
costs $2 for each task. The asset fairness first allocates User
A with 28 tasks (i.e., < 28 CPUs, 56 GB>) and B with 42
tasks (i.e., < 42 CPUs, 42 GB >) so that their aggregate
resources are equal. Next, since there are still < 30 CPUs,
2 GB> resources remained and it further allocates 2 tasks
for User B to exhaust all remaining memory resources. The
final allocation can therefore be 28 tasks (i.e., < 28 CPUs, 56
GB>) for A and 44 tasks (i.e., < 44 CPUs, 44 GB>) for B.

Problems of Asset Fairness. While AF seems compelling
in its simplicity, there are several significant drawbacks
below.

Sharing Incentive Problem. Consider the aforementioned
Example 1. For User B, there will be 50 tasks allocated in the
non-sharing partition of < 50 CPUs, 50 GB> , better than 44
tasks in the sharing case. Therefore, AF violates sharing
incentive property.

Resource-as-you-Contributed Unfairness Problem. Consider
again the two-user case of Example 3. Each task of A and
B takes $5 under AF policy. The fairness can be achieved
when each of A and B submits 20 tasks. At time t1, B runs
4 tasks and the remaining resources yields to A such that it
has 24 tasks scheduled. After that, since AF is memoryless,
the allocation results at time t2 are 20 tasks for each of A
and B even though there are 24 tasks demand for B. The
case is similar to time t3 and t4 and the resulting allocation

is shown in Table 1, which illustrates that AF fails to sat-
isfy resource-as-you-contributed fairness.

4 FAIRNESS DEFINITION

In practice, resource sharing can make some users in the
shared environment get sharing benefit (i.e, more efficiently
used resources) over non-sharing. On the other hand, due
to the resource contention, resource sharing can also pos-
sibly make the total resource a user used smaller than
that under non-sharing (i.e., sharing loss). For a good shar-
ing policy to achieve the resource-as-you-contributed fair-
ness and sharing incentive property, it should be able to
minimize sharing loss first and then maximize sharing bene-
fit for users.

We define some terminology for a multi-resource alloca-
tion system. Suppose the number of resource types is m and
the number of users isn. LetR ¼< r1; . . . ; rm> be the resource
capacity vector of the system. LetUiðtÞ ¼<ui;1ðtÞ; . . . ; ui;mðtÞ>
be the current resource allocation vector at time t, where ui;jðtÞ
is the current volume of resource type j allocated to user
ið1 � i � nÞ at time t. Let DiðtÞ ¼<di;1ðtÞ; . . . ; di;mðtÞ>
denote the current resource demand vector at time t, where
di;jðtÞ is the current demand of resource type j for user i at
time t. Then it holds that ui;jðtÞ � di;jðtÞ; for any resource type
j. Let SiðtÞ ¼<si;1ðtÞ; . . . ; si;mðtÞ> represent the resource fair
share vector at time t, where si;jðtÞ is the current fair share of
resource type j for user i. Assume the weight for user i is wi,
where wi ¼ Ki. Then user i’s resource share ratio is
wi=

Pn
k¼1 wk. Thereby, for user i, her resource share SiðtÞ

under the system resource capacityR can be computed as

SiðtÞ ¼ R � wi=
Xn

k¼1
wk: (1)

Note that the above runtime information (e.g., R;UiðtÞ;
DiðtÞ; and SiðtÞ) can be obtained during the computation in
current reservation-based systems such as YARN.

In the shared environment, due to the resource contention
between users, ui;jðtÞ can be larger or smaller than si;jðtÞ. In
contrast, in the non-shared environment, since there is no
resource contention issue, it thereby holds that ui;jðtÞ ¼
minfdi;jðtÞ; si;jðtÞg for any resource type j. For each resource
type jð1 � j � mÞ, we define the sharing (fairness) degree
bi;jðtÞ for the ith user as follows:

bi;jðtÞ ¼
AllocationWithSharing

AllocationWithoutSharing

¼
R t

0 ui;jðtÞdt
R t

0 minfdi;jðtÞ; si;jðtÞgdt
:

(2)

Moreover, in multi-resource allocation, since resources of
different types (e.g., CPU and memory) cannot be converted
between each other, the number of tasks that can be allocated
is determined by the dominant (bottleneck) resource type [20].
Thus, to have more tasks allocated in resource sharing than
non-sharing (i.e., sharing benefit), it must hold that bi;jðtÞ � 1
for any resource type j. Formally, we define the sharing (fair-
ness) degree biðtÞ for the ith user at time t as follows:

biðtÞ ¼ min
1�j�m

bi;jðtÞ: (3)

TABLE 1
A Comparison Example ofMemoryLess Multi-Resource
Fairness and Long-Term Multi-Resource Fairness in a

Computing System, Consisting of < 100 CPUs, 100 GB>
Resources for Two Users A and B

User A : < 1 CPU, 4 GB> User B : < 4 CPUs, 1 GB>

of Tasks Allocation # of Tasks Allocation

New Total Running Total New Total Running Total

t1 30 30 24 24 4 4 4 4
t2 20 26 20 44 24 24 20 24
t3 27 33 22 66 8 12 12 36
t4 10 21 20 86 30 30 20 56

(a) Allocation results based onMemorylessMulti-resource Fairness (e.g.,
DRF, AF). Total Tasks refers to the sumof the new arriving tasks and
accumulated remaining tasks in previous time.

User A : < 1 CPU, 4 GB> User B : < 4 CPUs, 1 GB>

of Tasks Allocation # of Tasks Allocation

New Total Running Total New Total Running Total

t1 30 30 24 24 4 4 4 4
t2 20 26 4 28 24 24 24 28
t3 27 49 23 51 8 8 8 36
t4 10 36 8 59 30 30 23 59

(b) Allocation results based on Long-TermMulti-resource Fairness (e.g.,
H-MRF).

TANG ETAL.: LONG-TERM MULTI-RESOURCE FAIRNESS FOR PAY-AS-YOU USE COMPUTING SYSTEMS 1151

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

For user i in the shared environment, biðtÞ > 1 indicates
the sharing benefit for the ith user at time t. biðtÞ < 1means
the sharing loss. In contrast, it always holds biðtÞ ¼ 1 in the
non-shared environment, since it has ui;jðtÞ ¼ minfdi;jðtÞ;
si;jðtÞg at any time t. That is, there are neither sharing benefit
nor sharing loss for users in the non-shared environment.
Therefore, for a good fair policy, it should be able to achieve
biðtÞ � 1 for all users (i.e., sharing benefit) in the shared
environment from a long-term view.

5 LONG-TERM MULTI-RESOURCE FAIRNESS

In Sections 3.2 and 3.3, we have shown that both DRF and
AF are memoryless, which perform the fairness allocation
without considering historical allocation. Because of this,
they fail to satisfy the resource-as-you-contributed fairness
and are thus not suitable for pay-as-you-use computing sys-
tems. To address it, in the following sections, we attempt to
investigate the time dimension of multi-resource allocation
by extending the existing multi-resource policies (e.g., DRF
and AF) with the long-term notion. Unfortunately, both
attempts are still unable to satisfy all the desired properties
of resource sharing in the pay-as-you-use computing system
in Section 2. Finally, we propose a new algorithm named H-
MRF to achieve the fairness with provable properties.

5.1 Attempt 1: Long-Term Dominant Resource
Fairness (LT-DRF)

Our first try is to enhance the existing (memoryless) multi-
resource allocation policy DRF with the long-term notion.
We name the resulting spatial-temporal fairness policy as
Long-Term Dominant Resource Fairness. It focuses on the accu-
mulated multiple resources, defined as the sum of currently
allocated multiple resources and historical allocated multi-
ple resources. For each user, LT-DRF calculates the share of
each accumulated resource consumed by that user. Themax-
imum among all shares of a user is called that user’s accumu-
lated dominant share, and the corresponding accumulated
resource is referred to as the accumulated dominant resource.
LT-DRF seeks to maximize the smallest accumulated domi-
nant share and achieves themulti-resource fairness by equal-
izing the accumulated dominant shares across all users.

Example 4.We extend Example 1 by assuming that initially
at time t1, the workloads for A are 15 tasks and for B are
80 tasks. At time t2, there are 60 tasks for A and 40 tasks
for B to run.

Consider the two-user case of Example 4. Fig. 3 illustrates
the allocation results with LT-DRF. At time t1, A has a small
number of tasks and thus her unused resources are released
to B, as shown in Fig. 3a. The accumulated dominant shares
for A and B are 30 and 70, respectively. In contrast, at time
t2, LT-DRF allocates more resources to A (i.e., schedules 35
tasks for A and 30 tasks for B) so as to make the accumu-
lated dominant shares for A and B become the same of 100,
as shown in Fig. 3b.

Theorem 1. LT-DRF is truthfulness.

Let’s revisit the former Example 2. In contrast to DRF
policy under which cheating users can get benefits as shown
in Fig. 2b, C’s cheating for preempting resources under LT-
DRF policy is a pre-consumption of its own resources and
needs to pay back at a later time to others, which does benefit
itself at all in the long run.

Theorem 2. LT-DRF violates the resource-as-you-contributed
fairness property.

The detailed proofs for Theorems 1 and 2 are presented
in Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2017.2788880. In summary, although LT-DRF
addresses the untruthfulness problem of DRF and inher-
its the sharing incentive property of DRF, it still fails to
satisfy the resource-as-you-contributed fairness as given
by Theorem 2.

5.2 Attempt 2: Long-Term Asset Fairness(LT-AF)

Another attempt is to extend Asset Fairness with the long-
term notion. We call the resulting policy Long-Term Asset
Fairness.

The idea of LT-AF is to equalize the aggregate resource
share of accumulated multiple resources allocated to each
user. Particularly, for each user i, LT-AF computes the aggre-
gate accumulated share ai ¼

Pm
1¼j f€ui;j=rjg, where €ui;j is the

share of accumulated resource j given to user i. It then allo-
cates resources with max-min by repeatedly choosing the
user with theminimum aggregate accumulated share.

Let’s consider again the same Example 4 of Section 5.1.
Fig. 4 illustrates the resource allocation result with LT-AF.
At time t1, LT-AF launches 15 tasks for A and 70 tasks for B
by releasing unused resources from A to B. Then the aggre-
gate accumulated shares forA andB are 45ð¼ 15� 1þ 15� 2Þ
and 140ð¼ 70� 1þ 70� 1Þ, respectively. However, at t2, since
B’s accumulated share at t1 is larger thanA, LT-AF schedules

Fig. 3. An example showing LT-DRF resource allocation. Fig. 4. An example showing LT-AF resource allocation.

1152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

42 tasks for A and 16 tasks for B, so that aggregate accumu-
lated shares are close to each other between A (i.e., 171) and
B (i.e., 172).

Theorem 3. LT-AF satisfies resource-as-you-contributed fair-
ness property.

Theorem 4. LT-AF violates sharing incentive property.

For the proofs of Theorems 3 and 4, please refer to
Appendix B, available in the online supplemental material.
To summarize, although LT-AF overcomes the resource-as-
you-contributed unfairness problem of AF, it still violates
the sharing incentive property.

5.3 Our Solution: Hybrid Multi-Resource Fairness
(H-MRF)

Addressing the limitations of the previous two attempts, we
derive a new algorithm for achieving the multi-resource
fairness, which we call H-MRF.

5.3.1 H-MRF Algorithm

Attempt 1 and Attempt 2 indicate that the naive extensions
of existing memoryless multi-resource fairness policies (e.g.,
DRF, AF) with the long-term notion have serious fairness
problems in the pay-as-you-use computing system. How-
ever, we make an interesting observation that they are com-
plementary to each other. For Attempt 1, LT-DRF extension
inherits the sharing incentive property of DRF, but fails to
satisfy the resource-as-you-contributed fairness. In contrast,
LT-AF in Attempt 2 satisfies the resource-as-you-contrib-
uted fairness, whereas it violates the sharing incentive prop-
erty. It might be possible for us to have a new policy by
combining DRF and AF with the long-term notion such that
it can satisfy all the desired properties for resource sharing
in the pay-as-you-use computing system.

The basic idea of H-MRF is that, if we can have a mecha-
nism to detect when LT-AF violates sharing incentive (i.e.,
there are some sharing-loss users) dynamically at runtime,
we can allocate more resources to those sharing-loss users
so that from a long-term view, all users are not sharing loss.
Then the modified policy will satisfy sharing incentive and
resource-as-you-contributed fairness.

Based on this idea, we propose H-MRF, a novel combina-
tion of DRF and AF with the long-term notion. The pseudo-
code is presented inAlgorithm 1. Each time, H-MRF performs
the resource allocation through the following four steps:

Step 1#. Computes the sharing degree bi for each user
according to Formula (3) in Section 4. If there are
sharing-loss users (i.e., bi < 1), it allocates resources
to the user with the minimum bi for sharing incen-
tive purpose allocation (Lines 10-11). Otherwise, it
indicates that all users get sharing benefits and thus
moves to Step 2 for resource-as-you-contributed fair-
ness purpose allocation (Lines 12-16).

Step 2#. Computes the aggregation value of total resources
allocated to every user over time in order for finding a
set of users N with the minimum aggregation value of
accumulated resources (Lines 13-14).

Step 3#. Finds the user with the minimum dominant
resource over the user setN (Line 15).

Step 4#. Allocates resources to the user from N (Line 16).

Algorithm 1. Hybrid Multi-Resource Fairness of DRF
and AF

1: R ¼<r1; . . . ; rm> : total resource capacities.
2: C ¼<c1; . . . ; cm> : consumed resources, initially 0.
3: Ui ¼<ui;1; . . . ;ui;m> ði ¼ 1 . . .nÞ: currently allocated resources

for user i.
4: €Ui ¼< €ui;1; . . . ; €ui;m> ði ¼ 1 . . .nÞ: accumulated resources

consumed by user i.
5: Si ¼<si;1; . . . ; si;m> ði ¼ 1 . . .nÞ: current resource share

for user i.
6: W ¼<w1; . . . ; wn> : weighted share. wi denotes the weight

for user i.
7: bi: the sharing degree for user i (See Formula (3) in

Section 4).
8: while there are pending tasks do
9: Find user i satisfying bi ¼ min1�j�nbj.
10: if bi < 1 then " Sharing loss for user i
11: ALLOC(i). "Allocate resources to user i.
12: else " All users have sharing benefits.
13: Get a setN of users satisfying the following condition:
14: N ¼ fijPm

j¼1 €ui;j � min1�k�n
Pm

j¼1 €uk;jg. "Users with
minimum overconsumption of resources. (AF policy)

15: Choose user iði 2 NÞwith the smallest weighted domi-
nant sharemaxm

j¼1f€ui;j=ðrj � wiÞg. " DRF Policy.
16: ALLOC(i). " Hybrid resource allocation with AF

and DRF.
17: function ALLOC(User i)
18: Di the next task demand for user i.

"Di ¼<di;1; . . . ; di;m> .
19: if Di þ C � R then
20: C ¼ CþDi:" Update currently consumed resources.
21: Ui ¼ Ui þDi: " Update user i’s currently con-

sumed resources.
22: for each k in f1 . . .mg do " Update accumulated

resources.
23: €ui;k ¼ €ui;k þminfui;k; si;kg þmaxf0; ui;k � si;kg.
24: update bi based on Formula (3) in Section 4.
25: Allocate resource to user i.
26: else " The system is utilized at maximum.
27: Wait until there is a completed task of resources Ri

from user i.
28: C ¼ C� Ri. "Update current system resource usage.

In the above resource allocation, Step 1 tries to make
sure that in the long-term resource allocation all users
can get sharing benefit over the exclusively non-sharing
case, which is a requirement for sharing incentive pur-
pose and it is given the first priority. Only if that is
guaranteed, we turn to Step 2, 3 and 4 for resource-as-
you-contributed fairness purpose allocation. Step 2 seeks
for a set of users with the minimum aggregation value of
accumulated resources and Step 3 picks up the user with
the minimum dominant resource over such a user set N .
Finally, Step 4 performs the resource allocation to the
selected user from Step 3.

Consider the two-user case of Example 4 in Section 5.1.
Fig. 5 shows the resource allocation results with H-MRF. At
t1, H-MRF launches all 15 tasks for A and 70 tasks for B. The
total aggregate resource value for A is 45, and for B is 140.
The sharing degrees forA andB are bAðt1Þ ¼ 1; bBðt1Þ ¼ 1:4,
respectively. However, at time t2, both of them have large
resource demands. To achieve resource-as-you-contributed

TANG ETAL.: LONG-TERM MULTI-RESOURCE FAIRNESS FOR PAY-AS-YOU USE COMPUTING SYSTEMS 1153

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

fairness, H-MRF allocates more resources to A so that their
total aggregate resource values are close to each other (i.e.,
165 for A, 180 for B) in the case that all users are not sharing
loss. The sharing degrees at time t2 are bAðt2Þ ¼ 1:375 and
bBðt2Þ ¼ 1 forA andB, respectively.

Finally, we show that H-MRF satisfies all desired proper-
ties list in Section 2.

Theorem 5. H-MRF satisfies sharing incentive property and
resource-as-you-contributed fairness.

Theorem 6 (Truthfulness). A user cannot have more amount
of resources/tasks allocated in H-MRF by falsely reporting her
true demand.

Theorem 7 (Pareto efficiency). A user cannot increase her
resources/tasks allocation in H-MRF without decreasing other
users’ allocation when system resources are fully utilized.

The detailed proofs of the aforementioned Theorems 5, 6
and 7 are given in Appendix C, available in the online sup-
plemental material.

Moreover, we also extend H-MRF for the distributed sce-
nario and show that it meets all desired properties listed in
Section 2. The detailed extension and the proof for each
property of H-MRF in distributed resource allocation can be
found in Appendix D, available in the online supplemental
material.

Finally, we summarize the fairness properties that are
satisfied by DRF, AF, LT-DRF, LT-AF and H-MRF in Table 2.
Only H-MRF can satisfy all the desired properties in the
pay-as-you-use computing system.

6 IMPLEMENTATION ON YARN

YARN [4] has been a popular resource management system
that enables a number of data-intensive computing frame-
works (e.g., MapReduce [16], Spark [40], HIVE [35]) to effi-
ciently share a cluster. In this section, we implement H-MRF
policy in YARN. Particularly, we develop a prototype called
MRYARN (Multi-Resource YARN) in about 1,500 lines of
code. Fig. 6 illustrates the overall design of MRYARN. We
add two major new components on top of YARN Resource
Manager, namely, Queue Tracker (QT) and Resource Allocator
(RA). QT tracks and monitors allocation information of each
queue over time. Based on the provided runtime informa-
tion, RA decides and allocates multiple resources to queues
dynamically.

Queue Tracker. To enable resource sharing, YARN
organizes resources into multiple queues. Each queue can
represent a user or an organization. For MRYARN, to
achieve the dynamic multi-resource allocation across multi-
ple queues, there is a need to maintain the runtime informa-
tion for each queue. We add a Queue Tracker inside each
queue to achieve that. Particularly, according to H-MRF,
two key information should be kept for each queue, namely,
accumulated resources and fairness degree.

Time Window-based Support. Instead of keeping the long-
term multi-resource fairness all the time since the system
starts, our MRYARN supports the long-term fairness over a
period of time (e.g., 1 day) for the sake of different users’
needs. Typically, two types of time window are supported
as follows:

(I) Tumbling Window. It divides the whole time into a set
of disjoint time windows of length Lt and ensures the
fairness within the window (Intra-window alloca-
tion).When a newwindow starts, the previous histor-
ical allocation information is dropped and it performs
the long-term resource fair allocation from the begin-
ning (Inter-window allocation). That is, the tumbling
window-based MRYARN is a hybrid scheduler with
the memorizing scheduling within each time window,
andmemoryless scheduling across timewindows.

(II) Sliding Window. Unlike tumbling window, it consists
of a number of (overlapped) time windows. Each
time window is created when a task scheduling
event is triggered. Given a window length Ls and
the current scheduling time tc, it only maintains the
resource allocation within the current time window
½tc � Ls; tc	. For historical allocation information,
only those jobs whose completion time are within
the current time window are counted. It performs

Fig. 5. An example showing H-MRF resource allocation. At t1, H-MRF
schedules 15 tasks for A and 70 tasks for B, and the sharing degrees
are bAðt1Þ ¼ 1; bBðt1Þ ¼ 1:4. The total aggregate resource value for A
and B are 45, 140, respectively (i.e., the difference is 95). At t2, H-MRF
schedules 40 tasks for A and 20 tasks for B so that the difference of total
aggregate resource values between A and B are minimized to 15 sub-
ject to bAðt2Þ � 1 ^ bBðt2Þ � 1 (i.e., bAðt2Þ ¼ 1:375; bBðt2Þ ¼ 1).

TABLE 2
Properties of DRF, AF, LT-DRF, LT-AF and H-MRF

Property Allocation Policy

DRF AF LT-DRF LT-AF H-MRF

Sharing Incentive ffip ffip ffip
Resource-as-you-contributed Fairness ffip ffip
Truthfulness ffip ffip ffip
Pareto Efficiency

ffip ffip ffip ffip ffip

Fig. 6. Overall design of MRYARN. New components are shown in rect-
angle with blue background, and others are from YARN.

1154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

the long-term multi-resource fairness within the cur-
rent time window (Intra-window allocation), and
drops the historical allocation information for memo-
ryless allocation from previous time windows (Inter-
window allocation).

For the tumbling window-based (or the sliding window-
based)MRYARN, whenLt ! þ1 (or Ls !þ1), it turns out
to be a pure long-term fair scheduler that memorizes all the
historical resource allocations since YARN system starts. In
contrast, it becomes amemoryless fair scheduler for MRYARN
when Lt ! 0 (or Ls ! 0). It indicates that MRYARN is also a
generalization of pure long-term andmemoryless schedulers.

Resource Allocator. Resource Allocator is responsible for
performing the multi-resource allocation to each queue. The
H-MRF policy is implemented in RA. When there are idle
resources and pending tasks, RA determines how much
resources should be given to which queue dynamically,
based on H-MRF algorithm and runtime allocation informa-
tion provided by QT. Moreover, to make it flexible, we pro-
vide users with a key argument of time window in the
default configuration file, to allow users to set it in terms of
their requirements.

Efficient Task Placement. In multi-resource allocation,
resource fragmentation can easily occur for a machine with-
out proper task placement [22], which results in poor resource
utilization and performance. Given a task and multiple
machines with sufficient idle resources, RA needs to carefully
choose a machine for the task so as to minimize the overall
fragmentation of the cluster. Grandl et al. [22] have shown
that it is analogous to multi-resource bin packing, which
is however a NP-problem. We thus propose a heuristic
approach by defining the affinity of a task as follows: Given a
set ofmachines for a task, we first compute an affinity value for
eachmachine to the task. The affinity value is the dot product
between the task’s resource demand and the vector of the
machine’s idle resources. The machine with the highest affin-
ity score is chosen for the task.

Overall Resource Allocation Flow. When a node man-
ager having idle resources connects to the resource man-
ager in a heartbeat, the fair scheduler will ask queue
manager for the resource allocation information of each
queue, provided by QT located at each queue. Having the
resource allocation information, RA then determines which
queue to allocate based on its H-MRF policy, and performs
the allocation finally.

6.1 Practical Considerations for MRYARN

Although the long-term fair policy H-MRF has many merits,
there are still some practical problems that need to be
addressed for MRYARN.

Starvation and Resource Oscillation Problems. As a long-term
fair policy, H-MRF allocates resources fairly based on the his-
torical resource allocations for users. It is thereby prone to
occur in MRYARN that a user yields her resources for a long
time (e.g., 30 mins) and then grabs lots of resources, starving
other users for a long while without being allocated (i.e., Star-
vation Problem). Moreover, it is also possible that an adversar-
ial user can ‘oscillate’ the resource allocation of the system
deliberately under the long-term fair scheduling (i.e., Resource
Oscillation Problem). For example, in the long-term fair sched-
uling, the adversarial user can pile-up resources and then
forces other users out (during hot times).

To address these two problems, we propose a starvation-
aware and resistant scheduler for MRYARN. It is based on
the time-out technique. The core idea is that, we provide users
with a threshold ttimeout and allow that any queue (user) who
has been waiting for ttimeout since its last time allocation is
given the highest priority in resource allocation. Through
time-out checking and dynamic resource allocation, we can
alleviate the starvation problem and meanwhile make sched-
uler resistant to adversarial behaviors from users. By default,
ttimeout is initialized to the length of time window. Users can
configure it according to their needs.

Time Window Issue. As we have mentioned earlier, the
window-based MRYARN is a generalized scheduler with
memorizing scheduling within the time window and mem-
oryless scheduling across time windows. It means that the
historical resource allocation of previous windows will be
no longer counted in the current window. Because of this, it
will offer hostile users ample opportunity to unfairly use
resources. For example, given a 1-hour window under the
tumbling window-based MRYARN, the hostile users have
to do is to run tasks preempting (borrowing) resources for
just a few minutes during each window, which will allow
them to earn lots of resources, especially when there are too
many time windows.

To alleviate this problem, one practical solution is to
enlarge the time window length so that there are a fewer
number of time windows. For example, if the shared
YARN cluster will run 24 hours, we can change the time
window length from 1 hour to a bigger value (e.g., 4
hours). Another possible solution is to have a limitation on
the maximum of preempted (borrowed) resources for a
user in each time window.

7 EXPERIMENTAL EVALUATION

We have used two complementary methods to evaluate the
effectiveness of our proposed approach. We first evaluate
H-MRF using our prototype MRYARN on an Amazon EC2
cluster. To estimate H-MRF at larger scale, we further con-
duct trace-driven simulations using Google cluster-usage
traces, as the results given in Appendix F, available in the
online supplemental material.

7.1 Experiment Setup

YARN Cluster. We have implemented H-MRF in the ver-
sion of YARN-2.4.0. We deploy the YARN framework in an
Amazon EC2 cluster consisting of 60 Amazon EC2 m3.
xlarge instances each with 4 virtual cores and 15 GB mem-
ory. We configure 1 instance as master, and the remaining
59 instances as slaves, each of which is configured with < 4
virtual cores, 15 GB> .

Macro-Benchmark. We run a mix of four different work-
loads for MRYARN below. Particularly, Facebook, Purdue,
and TPC-H are data-intensive workloads, whereas Spark
workload is compute-intensive one.

� Synthetic Facebook Workload: We synthesize Facebook
workload based on the distribution of jobs sizes
and inter-arrival time at Facebook provided by
Zaharia et al. [39]. The workload consists of 100
jobs. We categorize them into 9 bins of job types
and sizes, as listed in Table 3. It is a mix of large

TANG ETAL.: LONG-TERM MULTI-RESOURCE FAIRNESS FOR PAY-AS-YOU USE COMPUTING SYSTEMS 1155

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

number of small-sized jobs (1 � 15 tasks) and small
number of large-sized jobs (e.g., 800 tasks3). The job
submission time is derived from one of SWIM’s
Facebook workload traces (e.g., FB-2009_sam-
ples_24_times_1hr_1.tsv) [7]. The demand distribu-
tion of map/reduce tasks is based on Fig. 1
provided by Ghodsi et al. [20]. The jobs are from
Hive benchmark [2], containing four types
of applications, i.e., rankings selection, grep search
(selection), uservisits aggregation and rankings-
uservisits join.

� Purdue Workload: Five benchmarks (e.g., WordCount,
TeraSort, Grep, InvertedIndex, HistogramMovices)
are randomly chosen from Purdue MapReduce
Benchmarks Suite [13]. We use 40G wikipedia
data [11] for WordCount, InvertedIndex and
Grep, 40G generated data for TeraSort and Histo-
gramMovices with provided tools. To emulate a
series of regular job submissions in a data ware-
house, we submit these jobs sequentially at an
interval of 3 mins to the system.

� TPC-H Workload: To emulate continuous analytic
query, such as analysis of users’ behavior logs, we
ran TPC-H benchmark queries on Hive [3]. 40 GB
data are generated with provided data tools. Four
representative queries Q1, Q9, Q12, and Q17 are cho-
sen, each of which we create five instances. We
launch one query after the previous one finished in a
round robin fashion.

� Spark Workload: We choose three compute-intensive
machine learning algorithms, namely, kmeans, line-
arRegression(LR), and alternating least squares
(ALS) with provided example benchmarks. We ran
10 instances of each algorithm, which are launched
by a script that waits 2 minutes after each job com-
pleted to submit the next. We configure 1) each
kmeans instance with 100 workers, each with < 2
CPUs, 2 GB> resources; 2) each LR instance with
150 workers with < 2 CPU, 1 GB> resources per
worker; 3) each ALS instance with 100 workers, each
with < 1 CPU, 2 GB> .

We assume that there are four users User 1, User 2, User
3 and User 4, running Facebook, Purdue, Spark and TPC-H

workloads on the YARN cluster with equal resource contri-
butions, i.e, each user pays for 15 computing nodes of the
YARN cluster. We use the macro-benchmark to evaluate the
resource sharing fairness and performance for H-MRF in
Sections 7.2.2 and 7.2.3.

Micro-Benchmark.We create two queues namely,Queue1
and Queue2 with equal share. We run two jobs from Purdue
benchmarks eachwith the input wikipedia data of 40 GB. Job
1 is Sort (i.e., memory-intensive) and Job 2 is WordCount
(i.e., CPU-intensive). Each of them have 640 map tasks and
200 reduce tasks. YARN is container based.We configure Job
1 with < 2 CPUs, 1 GB> per map task and < 3 CPUs, 4
GB> per reduce task. In contrast, Job 2 is configured with
< 4 CPUs, 1 GB> per map task and < 2 CPUs, 4 GB> per
reduce task. We submit Job 1 first to Queue1 and wait for 60
seconds before submitting Job 2 to Queue2. We use this
micro-benchmark to show the dynamic resource sharing
process for H-MRF in Section 7.2.1.

Trace-Driven Simulator. To evaluate H-MRF at a larger
scale, we developed a trace-driven simulator that replays
logs from Google clusters. The simulator mimics these
aspects of tasks from the original trace: task submission
time, task resource requirements (e.g., cpu, memory) and
execution time, which are the least required information
needed for any task scheduling simulator.

Trace Dataset. Originally, the Google traces provide the
information about tasks submitted by over 900 users on a
cluster of 12K machines in one month, which are specified
by job_events, task_events, machine_events, machine_attributes,
task_constraints, task_usage listed in the schema.csv file. The
data of our simulator are retrieved from task_events (user,
task_index, cpu_request, memory_request,. . .) and task_usage
(user, task_index, start_time, end_time) tables, both of which
contain a common attribute of user and task_index. To gen-
erate our dataset, we first sort task_events according to user
attribute. Next, we select tasks of the first one hundred
users from tasks_events and find the corresponding task
start_time and end_time from task_usage according to tas-
k_index. The execution time is calculated through end_time
minus start_time. However, the Google trace does not pro-
vide the task submission time. In order to make simulator
work, we make an assumption by letting start_time repre-
sent task submission time.

7.2 YARN Benchmark Results

This section evaluates H-MRF in YARN cluster. We start by
showing how H-MRF adjusts the resource allocation of jobs
with different resource demands dynamically in Section
7.2.1. In Section 7.2.2, we give the resource sharing results
for H-MRF. We also compare it with other alternative poli-
cies. Finally, we present the performance results and mone-
tary cost of H-MRF as well as alternative polices in Section
7.2.3 and Appendix E, available in the online supplemental
material, respectively.

7.2.1 Dynamic Resource Sharing

We first show how H-MRF dynamically allocates resources
between jobs and achieves the resource-as-you-contributed
fairness by using micro-benchmark. Figs. 7a and 7b show
the CPU and memory demand for each MapReduce job dur-
ing its map/reduce phase computation over time, whereas

TABLE 3
Job Types and Sizes for Synthetic Facebook Workloads

Bin Job Type Map Tasks Reduce Tasks # Jobs

Demand # Demand

1 rankings selection 1 < 1,1 GB> NA NA 38

2 grep search 2 < 1, 1.5 GB> NA NA 18

3 uservisits aggregation 10 < 2, 0.5 GB> 2 < 4,2 GB> 14

4 rankings selection 50 < 4, 1 GB> NA NA 10

5 uservisits aggregation 100 < 2, 1.5 GB> 10 < 2, 2 GB> 6

6 rankings selection 200 < 3, 2 GB> NA NA 6

7 grep search 400 < 2, 1 GB> NA NA 4

8 rankings-uservisits join 400 < 1, 2 GB> 30 < 2, 0.5 GB> 2

9 grep search 800 < 2, 0.5 GB> 60 < 1, 3 GB> 2

3. We reduce the size of the largest jobs in [39] to have the workload
fit our cluster size.

1156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

Figs. 7c and 7d present the sharing degree and aggregate
accumulated resource. In the first 1 minute, only Job 1 is
running on the system and it possesses the whole cluster.
As shown in Fig. 7c, the sharing degree goes above 1.0 (i.e.,
sharing benefit) and achieves the maximum point of 1.84 at
the 60th second. After 1 minute, Job 2 is submitted. During
the period of 60 � 158 seconds, the sharing degree for Job 2
is below 1. This is because that when Job 2 arrives at time
60th second, the resources have being possessed by Job 1,
and then Job 2 needs to wait for idle resources released by
the completed tasks from Job 1. During this period, the
allocated resources for Job 2 are smaller than its share and
demand, making Job 2 have a sudden drop on its sharing
degree when it starts running. Observing that Job 2 is
under sharing loss, H-MRF gives a higher priority for Job 2
in resource allocation and it makes the sharing degree
curve of Job 2 begins to move up smoothly. Note after 158
seconds, both sharing degrees of Job 1 and Job 2 are above
1, despite their dynamic demands. However, H-MRF still
gives a higher priority for Job 2, since it detects that the
aggregate accumulated resource for Job 2 is smaller than
Job1 until the 247th second. During this period, Job 2 pos-
sesses most parts of cluster resources by preempting
resources from Job 1, which can be observed from the drop
of sharing degree curve of Job 1 in Fig. 7c and the flat of
aggregate accumulated resource curve for Job 1 in Fig. 7d
during the period of 60 � 247 seconds. We observe in
Figs. 7a and 7b that there is a sudden high CPU and mem-
ory demand at 245th second for Job 1 since its reduce tasks
begin to run. Its sharing curve continues to drop during
247 � 273 seconds although its aggregate accumulated
resources for Job 1 is smaller than Job 2, since it needs to
wait for idle resources released by the completed tasks
from Job 2. After that, Job 1 begins to catch up with Job 2.
Finally, their aggregate accumulated resources are much
close to each other (i.e., Job 1: 10,806, Job 2: 11,270) at the

670th second (i.e., achieving the resource-as-you-contrib-
uted fairness).

7.2.2 Resource Sharing Benefit/Loss

We compare DRF, LT-DRF, LT-AF and H-MRF with
macro-benchmark in Fig. 8. All results are relative to the
non-sharing scenario in which the sharing degree is one.
Figs. 8a and 8d show the sharing degree biðtÞ for each user
over time according to Formula (3). Typically, for the ith
user, biðtÞ � 1 indicates sharing benefit. Otherwise, it
means sharing loss. We make the following observations:

First, resource sharing can benefit most users. Due to the
different resource demands for users. Resource sharing can
enable overloaded users have chances to possess unused
resources from underloaded users, getting more resource
allocations than its share at a time and thus better than run-
ning in a non-shared partition cluster with maximum allo-
cation of her share at any time.

However, without a proper sharing policy, resource
sharing can also possibly downgrade the performance for
some users (i.e., the sharing degree is below one) in the pay-
as-you-use computing system, which is a very serious prob-
lem and its sharing loss should be reduced as much as pos-
sible according to SLA requirement. By comparing Figs. 8a,
8b, 8c, and 8d, we can observe that such degradation in DRF
is the worst. The sharing loss problem constantly exists until
all the users finish. DRF is a memoryless fair policy, which
does not take into account the historical allocation. Since the
demand for each user is changing over time, some users can
use much more resources (e.g., User 4 in Fig. 8a) over time
whereas some other users (e.g., User 3 in Fig. 8a) under
sharing get much fewer resources than that under non-
sharing over time. In contrast, LT-DRF, LT-AF and H-MRF
are long-term fair policies. They adjust the resource alloca-
tion for each user dynamically based on the historical

Fig. 7. The dynamic fair resource allocation process for two jobs under H-MRF, where Job 1 is submitted one minute before Job 2. The graphs (a) and
(b) present the CPU and memory demand for each job over time, respectively. The graphs (c) and (d) show the sharing degree and aggregate accu-
mulated resource for each job, respectively.

Fig. 8. The comparison of resource sharing results for different policies in YARN. The results are relative to the non-sharing scenario in which the the
sharing degree is one. The graphs (a)�(d) show the detailed sharing degree biðtÞ for each user under the corresponding policy according to For-
mula (3). Typically, for the ith user, biðtÞ � 1means sharing benefit. biðtÞ < 1 indicates sharing loss.

TANG ETAL.: LONG-TERM MULTI-RESOURCE FAIRNESS FOR PAY-AS-YOU USE COMPUTING SYSTEMS 1157

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

allocation so that the aggregate accumulated resources for
each user are close to each other.

Second, H-MRF has a better allocation result (i.e., less
sharing loss) than LT-DRF and LT-AF. Different from LT-
DRF and LT-AF in resource allocation, H-MRF is sensitive
to sharing loss problem. It monitors the sharing degree
for each user dynamically and always assigns higher pri-
ority to those users under sharing loss (i.e., sharing
degree is below one) if available than users under sharing
benefit. For example, in Fig. 8d, when H-MRF detects at
time 85th second that the sharing degree for User 2 is
smaller than one (i.e., sharing loss), it gives a higher pri-
ority in resource allocation so that more resources can be
allocated for User 2 over time, to maximize the sharing
degree (i.e., by reducing the sharing loss). Note, there are
sharing loss for some users (e.g., User 1) at the beginning
of computation in Fig. 8d. This is due to the unavoidable
resource waiting problem (for any policies): the tasks of
the first arriving user possesses the whole cluster resour-
ces, which makes the tasks of later arriving users have to
wait for idle resources released by former user’s tasks for
a small amount of time.

7.2.3 Performance Evaluation

Fig. 9 presents the average resource utilization and the per-
formance for each workload of the macro-benchmark. We
implement the static partitioning in YARN for four work-
loads by dividing the whole cluster resources equally into
four portions and limiting the maximum size of each por-
tion (i.e., memory and CPU resources) that can be allocated
to each queue. We have the following observations:

First, resource sharing is better than static partitioning in
resource utilization and performance. As shown in Fig. 9a
the average CPU and memory utilizations for sharing poli-
cies (e.g., DRF, LT-DRF, LT-AF, H-MRF) are higher than
that in static partitioning. For example, the average memory
utilizations for DRF, LT-DRF, LT-AF, H-MRF are
57%; 59%; 62%; 71%, respectively, whereas there is only 38
percent for static partitioning. As shown in Fig. 9b, each
workload consumes longer time to finish in the static parti-
tioning than in the sharing case. For example, for Facebook
workload, H-MRF is 2:1� faster than static partitioning. The
performance gain is primarily due to the resource preemp-
tion of unused resources from overloaded queues in the
sharing case, which can be reflected from the higher CPU/
memory resource utilization in the sharing. The observation
is consistent with prior works such as [23].

Second, H-MRF outperforms other baseline sharing poli-
cies in performance due to its efficient task placement in

reducing the fragementation of machines in multi-resource
allocation, whereas other alternative sharing policies do not
have such a concern and simply treat all machines as a sin-
gle super machine.

8 RELATED WORK

Multi-Resource Fairness. As for multi-resource allocation,
DRF is a popular fair policy [20], which provides fair alloca-
tion of multiple resources based on dominant shares. The
attractiveness of DRF stems from its good merits such as
sharing incentive, envy-freeness, and pareto-efficiency. It
has been implemented in many current datacenter frame-
work, including YARN [4], Mesos [23]. After that, there
have been lots of extension and generalization for DRF.
Bhattacharya et al. [14] generalized DRF to support hierar-
chical scheduling. Ghodsi et al. [19] extended DRF to fair
queueing of package processing. Wong et al. [25] later gen-
eralized the measure of DRF and incorporated it into a uni-
fying framework that captures the tradeoffs between
performance efficiency and fairness. Kash et al. [26]
extended the DRF model to a dynamic setting where users
can join the system over time but will never leave. Wang
et al. [36] generalized DRF in a distributed system with het-
erogeneous servers, followed by a TSF fairness policy for
the case when there is a placement constraint for task place-
ment [37]. Dolev et al. [18] generalized DRF to consider mul-
tiple contended resources by proposing bottleneck-based
fairness, rather than the single dominant (bottleneck)
resource only for each user. Parkes et al. [28] extended DRF
in several ways and focused on in particular the case of indi-
visible tasks. Liu et al. [27] proposed a Reciprocal Resource
Fairness by extending DRF to allow the trade among differ-
ent types of resources between users. Tang et al. [30] pro-
posed a EMRF to balance the tradeoff between fairness and
efficiency for Coupled CPU-GPU architecture by extending
DRF with the knob. When the resource demand vector
required by DRF is not available in computer architectures,
Zahedi et al. [42] proposed an alternative multi-resource
policy based on Cobb-Douglas utility function for multi-
processors. However, all the works above are memoryless,
i.e., allocating resource at the instant time without historical
allocation information considered. We show particularly in
Section 3.2 that it encounters severe problems in the pay-as-
you-use computing system, due to its memoryless property.
In comparison, we proposed a spatial-temporal multi-
resource fairness policy called H-MRF and showed that it
can address all these problems and meanwhile satisfy all
the properties desired for pay-as-you-use computing.

Fair Schedulers in Data Processing Systems. Many data
processing systems now support the fair scheduling of mul-
tiple jobs, such as Hadoop Fair Scheduler [39], Quincy [24],
Mesos [23], and Choosy [21]. Hadoop [1], [33], [34] divides
resources into map/reduce slots and allocates them fairly
across pools and jobs. In contrast, YARN [4] partitions
resources into containers (i.e., a set of memory and CPU
cores) and tries to guarantee fairness among queues.
Quincy [24] achieves the fairness of scheduling multiple
jobs by formulating it as a min-cost flow problem.Mesos [23]
enables multiple diverse computing frameworks such as
Hadoop and MPI sharing a single cluster system.

Fig. 9. The comparison on resource utilization and performance for DRF,
LT-DRF, LT-AF, H-MRF and static partitioning (i.e., non-sharing case).

1158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

Choosy [21] extends the max-min fairness by considering
placement constraints. However, all these schedulers are
memoryless and thus not suitable for resource sharing in the
pay-as-you-use computing system. In comparison, Tang
et al. [31] proposed a long-term resource fairness (LTRF)
policy and developed a prototype LTYARN [31] that imple-
ments the LTRF in YARN for the single-resource fairness.
They showed that LTYARN is suitable for pay-as-you-go
computing system. In contrast, this paper considers the
multi-resource fairness allocation with multiple resource
types. We have made the following observations and contri-
butions. First, we show that the currently popular multi-
resource fair policies such as DRF and AF still have serious
fairness problems, due to their memoryless feature. Second,
we observe the naive extensions of DRF (or AF) with the
long-term notion cannot meet all the desired properties.
Next, by analyzing two attempts, we propose H-MRF that
generalizing DRF and AF with the long-term notion for
multi-resource fairness in the pay-as-you-use computing
system. Finally, we develop MRYARN, which implements
H-MRF in YARN for multi-resource allocation in the pay-
as-you-use computing system.

9 CONCLUSION

Resource sharing is an efficient way to improve the resource
utilization of a computing system. Multi-resource fairness is
needed and important due to the heterogeneous resource
demands for tasks in practice. However, we observe that the
popular multi-resource fair policy, DRF, used in existing sys-
tems such as YARN, is not suitable for contribute-as-you-use
computing, due to the untruthfulness problem and resource-
as-you-contributed unfairness problem. To address the prob-
lems, we have proposed H-MRF and show that it is suitable
for contribute-as-you-use computing. Finally, we implement
H-MRF in YARN by developing a prototype MRYARN. Our
experiments show that 1). all users have sharing benefits
under H-MRF, whereas DRF does not; 2). Resource sharing
withH-MRF can achieve a higher resource utilization and bet-
ter performance (about 1:2� � 1:8� performance improve-
ment over static partitioning) than alternative resource
sharing policies; 3) users under H-MRF can get the highest
monetary cost savings compared to its alternatives (e.g., DRF,
LT-DRF, LT-AF).

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science
Foundation of China (61602336, 61772544, U1731125).
Ce Yu’s work is supported by the National Natural Science
Foundation of China (U1531111, U1731243). Bingsheng and
Zhaojie’s work is supported by a MoE AcRF Tier 1 grant (T1
251RES1610) and anNUS startup grant in Singapore.

REFERENCES

[1] Apache hadoop. [Online]. Available: http://hadoop.apache.org,
2017.

[2] Apache hive performance benchmarks. [Online]. Available:
https://issues.apache.org/jira/browse/HIVE-396, 2017.

[3] Apache TPC-H benchmark on hive. [Online]. Available: https://
issues.apache.org/jira/browse/HIVE-600, 2016.

[4] Apache yarn. [Online]. Available: https://hadoop.apache.org/
docs/current2/index.html, 2017.

[5] Blue waters. [Online]. Available: http://www.ncsa.illinois.edu/
enabling/bluewaters/, 2017.

[6] Comet. [Online]. Available: http://www.sdsc.edu/services/hpc/
hpc_systems.html, 2017.

[7] Facebook workload traces. [Online]. Available: https://github.
com/SWIMProjectUCB/SWIM/wiki/Workloads-repository, 2012.

[8] Google cluster data. [Online]. Available: https://code.google.
com/p/googleclusterdata/, 2014.

[9] Max-min fairness (Wikipedia). [Online]. Available: http://en.
wikipedia.org/wiki/Max-min_fairness, 2017.

[10] Mira. [Online]. Available: http://www.alcf.anl.gov/mira, 2017.
[11] Puma datasets. [Online]. Available: http://web.ics.purdue.edu/

~fahmad/datasets.htm, 2014.
[12] M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad, “Cloud

computing pricing models: A survey,” Int. J. Grid Distrib. Comput.,
vol. 6, no. 5, pp. 93–106, 2013.

[13] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar, “PUMA:
Purdue MapReduce benchmarks suite,” ECE Technical Reports,
2012. [Online]. Available: https://docs.lib.purdue.edu/ecetr/437

[14] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker,
and I. Stoica, “Hierarchical scheduling for diverse datacenter
workloads,” in Proc. ACM Symp. Cloud Comput., 2013, pp. 4:1–4:15.

[15] A. D. Breslow, A. Tiwari, M. Schulz, L. Carrington, L. Tang, and
J. Mars, “Enabling fair pricing on HPC systems with node
sharing,” in Proc. Int. Conf. High Performance Comput. Netw. Storage
Anal., 2013, pp. 37:1–37:12.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. USENIX Conf. Operating Syst. Des.
Implementation, 2004, pp. 10–10.

[17] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
QoS-aware cluster management,” in Proc. Int. Conf. Archit. Support
Program. Languages Operating Syst., 2014, pp. 127–144.

[18] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and
N. Linial, “No justified complaints: On fair sharing of multiple
resources,” in Proc. Conf. Innovations Theoretical Comput. Sci., 2012,
pp. 68–75.

[19] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” in Proc. Conf. Appl. Technol.
Archit. Protocols Comput. Commun., 2012, pp. 1–12.

[20] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2011, pp. 323–336.

[21] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Choosy: Max-
min fair sharing for datacenter jobs with constraints,” in Proc.
ACM Eur. Conf. Comput. Syst., 2013, pp. 365–378.

[22] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in
Proc. Conf. Appl. Technol. Archit. Protocols Comput. Commun., 2014,
pp. 455–466.

[23] B. Hindman, et al., “Mesos: A platform for fine-grained resource
sharing in the data center,” in Proc. USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 295–308.

[24] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM Symp. Operating Syst. Principles, 2009,
pp. 261–276.

[25] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allo-
cation: Fairness-efficiency tradeoffs in a unifying framework,”
IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 1785–1798, Dec. 2013.

[26] I. Kash, A. D. Procaccia, and N. Shah, “No agent left behind:
Dynamic fair division of multiple resources,” in Proc. Int. Conf.
Auton. Agents Multiagent Syst., 2013, pp. 351–358.

[27] H. Liu and B. He, “Reciprocal resource fairness: Towards coopera-
tive multiple-resource fair sharing in IaaS clouds,” in Proc. Int. Conf.
High Performance Comput. Netw. Storage Anal., 2014, pp. 970–981.

[28] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond dominant
resource fairness: Extensions, limitations, and indivisibilities,”
ACM Trans. Econ. Comput., vol. 3, no. 1, pp. 3:1–3:22, Mar. 2015.

[29] J. Sahu and K. R. Heavey, “Advanced computational fluid dynam-
ics simulations of proiectiles with flow control,” in Proc. Int. Conf.
High Performance Comput. Netw. Storage Anal., 2004, pp. 27–27.

[30] S. Tang, B. He, S. Zhang, and Z. Niu, “Elastic multi-resource fair-
ness: Balancing fairness and efficiency in coupled CPU-GPU
architectures,” in Proc. Int. Conf. High Performance Comput. Netw.
Storage Anal., 2016, pp. 75:1–75:12.

TANG ETAL.: LONG-TERM MULTI-RESOURCE FAIRNESS FOR PAY-AS-YOU USE COMPUTING SYSTEMS 1159

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

[31] S. Tang, B.-S. Lee, B. He, and H. Liu, “Long-term resource fairness:
Towards economic fairness on pay-as-you-use computing sys-
tems,” in Proc. Annu. Int. Conf. Supercomput., 2014, pp. 251–260.

[32] S. Tang, B.-S. Lee, and B. He, “Fair resource allocation for data-inten-
sive computing in the cloud,” IEEE Trans. Services Comput., vol. 11,
no. 1, pp. 1–14, 2018.

[33] S. Tang, B.-S. Lee, and B. He, “Dynamic job ordering and slot con-
figurations for MapReduce workloads,” IEEE Trans. Services Com-
put., vol. 9, no. 1, pp. 4–17, Jan. 2016.

[34] S. Tang, B.-S. Lee, and B. He, “DynamicMR: A dynamic slot allo-
cation optimization framework for MapReduce clusters,” IEEE
Trans. Cloud Comput., vol. 2, no. 3, pp. 333–347, Oct. 2014.

[35] A. Thusoo, et al., “Hive - A petabyte scale data warehouse using
hadoop,” in Proc. IEEE Int. Conf. Data Eng., Mar. 2010, pp. 996–
1005.

[36] W. Wang, B. Li, and B. Liang, “Dominant resource fairness in
cloud computing systems with heterogeneous servers,” in Proc.
IEEE INFOCOM, Apr. 2014, pp. 583–591.

[37] W. Wang, B. Li, B. Liang, and J. Li, “Multi-resource fair sharing for
datacenter jobs with placement constraints,” in Proc. Int. Conf.
High Performance Comput. Netw. Storage Anal., 2016, pp. 86:1–86:12.

[38] P. Webster, “NASA center for climate simulation: Data-centric cli-
mate computing, in Proc. Int. Conf. High Performance Comput.
Netw. Storage Anal., 2011, pp. 1–6.

[39] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. ACM Eur.
Conf. Comput. Syst., 2010, pp. 265–278.

[40] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in Proc.
USENIX Conf. Hot Topics Cloud Comput., 2010, pp. 10–10.

[41] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. USENIX Conf. Operating Syst. Des. Implementation,
2008, pp. 29–42.

[42] S. M. Zahedi and B. C. Lee, “REF: Resource elasticity fairness with
sharing incentives for multiprocessors,” in Proc. Int. Conf. Archit.
Support Program. Languages Operating Syst., 2014, pp. 145–160.

Shanjiang Tang received the BS and MS
degrees from Tianjin University, China, in January
2008 and July 2011, respectively, and the PhD
degree from the School of Computer Science
and Engineering, Nanyang Technological Univer-
sity, Singapore, in 2015. He is currently an assis-
tant professor in the School of Computer Science
and Technology, Tianjin University, China. His
research interests include parallel computing,
cloud computing, big data analysis, and computa-
tional biology.

Zhaojie Niu received the bachelor’s and master’s
degrees from the Huazhong University of Science
and Technology (HUST), China, in January 2009
and July 2012 respectively, and the PhD degree
from Nanyang Technological University (NTU),
Singapore, in September 2017. He is a research
associate with the National University of Singa-
pore (NUS). He is interested in resource manage-
ment, job scheduling, and data processing in
large-scale clusters.

Bingsheng He received the bachelor’s degree in
computer science from Shanghai Jiao Tong Uni-
versity, in 2003 and the PhD degree in computer
science from the Hong Kong University of Science
and Technology, in 2008. He is an associate pro-
fessor in the School of Computing, National Uni-
versity of Singapore. His research interests
include high performance computing, distributed
and parallel systems, and database systems.

Bu-Sung Lee received the BSc (Hons.) and PhD
degrees from the Electrical and Electronics
Department, Loughborough University of Technol-
ogy, United Kingdom, in 1982 and 1987, respec-
tively. He is currently an associate professor in the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore. His
research interests include computer networks
protocols, distributed computing, network man-
agement, andGrid/Cloud computing.

Ce Yu received the BS and MS degrees from
Tianjin University, in 1998 and 2005, respectively,
and the PhD degree in computer science from
Tianjin University (TJU), in 2009. He is currently
an associate professor and director of High Per-
formance Computing Lab (HPCL) of Computer
Science & Technology in Tianjin University. His
main research interests include high performance
computing, big data, astro-informatics, and cloud
computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 5, MAY 2018

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 30,2020 at 06:08:10 UTC from IEEE Xplore. Restrictions apply.

