
DADEs: 5G Dual-Adaptive Delay-aware and
Energy-saving System with Tandem Learning
Sheng Lin1,4, Chao Qiu1,4, Jingchao Tan1, Xiaofei Wang1,4, Yajun Yang1, Ying He2,4, Jing Jiang3.

1Tianjin University, Tianjin, China
2Shenzhen University, Shenzhen, China

3XI’AN University of Posts and Telecommunications, Xi’an, China
4Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen, China

Abstract—Nowadays, numerous primary technologies, like
ultra-dense networks (UDNs) and Base Stations (BSs) sleeping
state, are developed in fifth-generation (5G) networks. Due to
the UDNs, the number of BSs in 5G networks is proliferating,
along with the energy consumption. Therefore, it is necessary
to cut down the energy attrition in 5G networks under the
assurance of delay. Till now, some researchers have proved
that the association of users and the sleeping states of BSs
have a significant effect on energy consumption and latency in
5G networks. However, the traditional solutions associate users
and select states nonadaptively without the dual consideration
of energy-saving and delay. In view of this, we propose a dual-
adaptive delay-aware and energy-saving system (DADEs) in
5G networks. To further optimize the energy and delay of
5G BSs, the model is split into two tandem problems: user
association and BS state selection. Meanwhile, a tandem deep
reinforcement learning (T-DRL) algorithm is presented to make
decisions in these problems for optimizing and balancing per-
formance between delay and energy adaptively. Additionally,
the real datasets of 5G users and BSs are used and trained
in this paper. Finally, simulation results show that the DADEs
saves more than 50% of energy with an adaptive and satisfying
latency.

Index Terms—5G Networks, Energy Saving, Delay-aware,
Tandem Deep Reinforcement Learning

I. INTRODUCTION

Nowadays, with the large-scale commercialization, in-
terests in fifth-generation (5G) networks elicit escalating
attention [1]. 5G networks could be regarded as the collec-
tion of primary technologies, including ultra-dense networks
(UDNs), energy-aware communication, etc. [2]. In this con-
text, the performance of 5G networks is skyrocketing, which
is expected to support greater network densification, a higher
density of users, as well as the lower latency [3].

However, due to the booming increase in Base Stations
(BSs) and users in UDNs, energy consumption mounts up
explosively [4]. It is reported that 5G networks consume
about 4.7% of electricity resources and generate 1.7% of
total carbon emissions in the world [5] and 15% of BS
energy is wasted due to the fixed user association in 5G
Networks [6]. Hence, user association and energy control for
5G BSs couldn’t be ignored. On the other hand, the essential
applications of 5G networks are low-latency communica-

tions. It follows that these applications require a minor-delay
web environment [7]. These challenges have spawned the
research hotspots, which is how to control BSs adaptively
and intelligently [8].

Traditionally, numerous studies tried to solve the above
challenges. For example, the authors in [9] switched off BSs
by setting the traffic threshold for energy-saving. Without
predicting network traffic, such frequent starting and shutting
operations overturn the benefit of energy-saving due to the
extra delay and energy. The works in [10]–[12] used rein-
forcement learning to control BS states, where the data were
simulated and trained. The authors in [13] used renewable
energy in BSs, which aimed to achieve zero carbon emission.
The works in [14], [15] saved energy by controlling the
frequency of BSs according to different applications. And
the works in [16] put forward meta-heuristic algorithms to
optimize the green deployment of BSs.

Although the above traditional methods enable saving
energy, numerous nontrivial issues in the current methods
prevent them from being used as a generic scheme for the
realistic scene, including:

1) Traditional methods are unable to operate BSs
adaptively according to traffic in 5G Networks. Fixed
switching-off strategies obtained by history traffic are inef-
fective in some emergencies, such as holidays and events.

2) Users association in 5G Networks is ignored in
the optimization of energy and delay. Traditionally, the
fixed user association strategy is used in 5G networks,
e.g., the maximum received signal strength (max-RSS) [17].
However, with the dense distribution of BSs, users have more
choices in establishing the data connections.

3) Traditional energy-saving strategies lack a real 5G
dataset. Until now, most of the studies are conducted by
emulated data, which can not reflect the real networks.

This paper proposes a dual-adaptive delay-aware and
energy-saving system (DADEs) with tandem deep rein-
forcement learning (T-DRL) in 5G networks. Specifically,
the T-DRL makes strategies for user association and BS state
selection problems. Additionally, the real 5G datasets are
used and trained in the simulation. The DADEs puts the

2022 IEEE Global Communications Conference: Green Communication Systems and Networks

1

GL
O

BE
CO

M
 2

02
2 

- 2
02

2 
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e 

| 
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0 
©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
03

5

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2023 at 08:29:38 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. 5G Dual-Adaptive Energy-saving and QoS-aware System

total requests into the user association model and compute
association strategies in each timeslot. After that, entire
workloads are aggregated and passed to the BS state selec-
tion model. Finally, according to different delay sensitivity
factors, DADEs changes BSs states by state-selecting strate-
gies adaptively.

The contributions of this paper are as follows.
• We propose the DADEs in 5G networks. We optimize

the energy consumption and ensure the low latency
of 5G networks from two aspects, the user allocation
problem and BS state selection problem adaptively.

• We first attempt to study energy and delay optimiza-
tion problems by the real 5G dataset. The dataset
contains the data of 5G BSs over two months, which
includes basic information about users and the statistics
of uplink and downlink in each 5G BS.

• We propose the T-DRL to solve user allocation and
BS state selection problems. The simulations show
that with the low-latency assurance, the T-DRL saves
more than 50% of energy than the base models.

The rest of the paper is organized as follows. The system
model is presented in Section II, including the 5G energy-
saving sleep states, networking traffic model and energy and
delay model. Then we formulate the optimization problem
in Section III. Section IV introduces the T-DRL algorithm,
containing the user allocation algorithm and BS state selec-
tion algorithm. We display the simulation results in Section
V and conclude in Section VI.

II. SYSTEM MODEL

The DADEs consists of massive 5G BSs, users and a
T-DRL module. The workflow of DADEs is described as
follows: ① When users request data from 5G networks,
the basic information (e.g., GPS location, data size, etc.)
will be sent to the T-DRL. And then, the T-DRL collects
the information and puts them into the user association
model. ② The user association model generates association
strategies decide each user establish a unique association
to 5G BS. ③ After determining the association, the T-DRL
collects the workload from BSs and computes the state
strategies according to the delay sensitivity factor in the state
selection model. ④ Finally, when BSs have completed the

TABLE I
5G BASE STATION STATE INFORMATION [19].

State Active SS1 SS2 SS3 SS4Work Idle
Power 207W 132W 82.2W 35.5W 13.3W 9.51W
(de)Activation duration 35.5us 0.5ms 5ms 0.5s

transmission in a timeslot, BSs select a specific sleep state.
The details of the DADEs are shown in Fig. 1.

A. 5G Energy-saving Sleep States

Besides work and idle state, the authors in [18] advised
that different sleep states (SS) in 5G BSs could save
energy when the BS is not working. For each state, the
(de)activation duration and the power of each state are
different. Specific information is shown in Table I.

It can be seen from Table I that when the BS enters a
deeper sleep state, more energy is saved. However, when
users request data from the BS, they also need to wait longer
because the BS takes longer to activate from the sleep state.

B. Networking Traffic Model

A large-scale and ultra-dense 5G cellular networks consist
of M 5G BSs, denoted by M = { mi | i = 1, 2, ...,M},
each BS has bandwidth Bmi

. Meanwhile, there are N 5G
users, denoted by N = { nj | j = 1, 2, ..., N} distributed
in the networks. Users have different request sizes and
locations, which are represented as dnj and xnj , ynj , re-
spectively. All BSs work according to the timeslot denoted
by T = { τ | 1, 2, · · · , T}.

In the traffic model, users request data from the designated
BS, and each 5G BS serves multiple users simultaneously.
Given a bandwidth Bmi

and the noise spectral density N0,
the rate of user nj served by BS mi (rmi,nj

) is:

rmi,nj = Bmi · log2(1 +
Pmi · hmi,nj

N0 ·Bmi +
∑

k ̸=i Pmk · hmi,nj

) (1)

where Pmi
is the cell transmit power and hmi,nj

is the user
channel gain served by BS mi.

After known the rate of user nj , the request time of
user nj is: tmi,nj = dnj/rmi,nj , where dnj represents
the request size of user nj . If the BS completes all the
datacomms in a timeslot t, it will select a specific sleep
state until the next timeslot. Otherwise, it will be working
during the whole timeslot. The working (twmi

) and sleeping
time (tsmi

) of BS mi are:

twmi
= tami

+
∑

nj∈N

tmi,nj , (2)

tsmi
=


t− tami

−
∑

nj∈N

tmi,nj if t ≥ twmi

0 otherwise

(3)

where tami
is activation duration referred from TABLE I.
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Workload Workload

Workload Workload
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(a) Optimization of User Association from max-RSS to T-DRL.

Fixed BS State 
Selection by Greedy

Adaptive BS State 
Selection by T-DRL

T-DRL 
Optimize

Delay increases
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delay non-sensetive 

Timeslot

Work IDLEDelay

Timeslot

Work SS2Delay

delay sensetive 

Timeslot

Work SS3Delay

Timeslot

Work SS1Delay

Delay decreases
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(b) Optimization of BS State Selection from Greedy to T-DRL.

Fig. 2. User Association and State Selection Problems.

C. Energy and Delay Model

Since the BS selects a SS after working, it needs to
activate from the SS before the next timeslot. According to
the TABLE I, the deeper the SS is, the longer the activation
time are. Therefore, when calculating the user delay of a
BS, both the time for transmission and activation should be
considered. Moreover, because all the users in BS mi need
to wait for activation, a total activated delay is the activation
duration multiplied by the user number (smi

). The delay is:

D =
∑

mi∈M

Dmi =
∑

mi∈M

(smi · t
a
mi

+ tmi). (4)

The energy consumed by the BSs in a timeslot is the sum
of working energy (Ew) and sleeping energy (Es). Accord-
ing to the equation 3, timeslot can be divided into working
and sleeping time for most BSs, which have different power
pw and ps referred from TABLE I. Specifically, working
time includes the activation duration (tami

) and request time
(tmi

); and the BS sleeps during the remaining time in the
timeslot. Therefore the energy consumption E describes as:

E =
∑

mi∈M

Emi =
∑

mi∈M

(Ew
mi

+ Es
mi

)

=
∑

mi∈M

( pw · twmi
+ ps · tsmi

).
(5)

III. PROBLEM FORMULATION

The paper introduces the energy-delay reward (EDR) to
optimize energy and delay jointly.

EDR = η ·D + (1− η) · E, (6)

where η ∈ [0,1] is the delay sensitivity factor to balance
the effect between delay and energy. In particular, when η
approaches 0, the users are insensitive to delay, and the
DADEs will pay all attention to saving energy. On the
contrary, when η comes to 1, the system will focus on
reducing latency without considering energy consumption.

To optimize the EDR, we divide the optimization problem
into the user association problem and the BS state selec-
tion problem. These problems will be optimized jointly,
achieving the minimization of EDR. These problems will
be introduced as follows respectively.

A. User Association Problem

In the user association problem, which is described in
the Fig. 2(a), the T-DRL module computes the association
strategies Πu = { πnj

| nj ∈ N}.
In general, in the user association problem, the objective is

balancing workload and minimizing the working time for all
BSs by optimizing the association from max-RSS to T-DRL
algorithm, which is expressed as the following equation:

Πu = argmin
Πu

∑
mi∈M

twmi

= argmin
Πu

∑
mi∈M

(tami
+

∑
nj∈N

tmi,nj )

= argmin
Πu

(
∑

mi∈M

tami
+

∑
mi∈M

∑
nj∈N

tmi,nj ).

(7)

B. BS State Selection Problem

After associations have been solved, the DADEs enters the
BS state selection problem. Energy and delay are optimized
jointly here, and the EDR is used to evaluate the state
selection performance, which represents as follows:

EDR =
∑

mi∈M

EDRmi

=
∑

mi∈M

(η ·Dmi + (1− η) · Emi)

=
∑

mi∈M

[ η · (smi · t
a
mi

+ tmi)

+ (1− η) · (pw · twmi
+ ps · tsmi

) ].

(8)

The DADEs generates strategies Πs = { πmi
| mi ∈

M} and controls 5G BSs entering into specific sleep state
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Fig. 3. Tandem Deep Reinforcement Learning Algorithm

adaptively rather than being idle or SS3. The optimization
is described in the Fig. 2(b).

Finally, in the BS state selection problem, the optimization
objective is expressed as follows:

Πs =argmin
Πs

EDR

=argmin
Πs

∑
mi∈M

EDRmi

=argmin
Πs

∑
mi∈M

(η ·Dmi + (1− η) · Emi)

= argmin
Πs

∑
mi∈M

[ η · (smi · t
a
mi

+ tmi)

+ (1− η) · (pw · twmi
+ ps · tsmi

) ].

(9)

IV. TANDEM DEEP REINFORCEMENT LEARNING

The T-DRL solves problems in Section III. It contains
two DRL models in a tandem form, and each DRL model
optimizes the user association problem and the BS state
selection problem. The details of the T-DRL are shown in
Fig 3, and each DRL model will be introduced as follows.

A. Deep Reinforcement Learning for User Association

In the DRL model of user association, the state space Su,
action space Au and reward function Ru are expressed by
the following equations. The state Su is represented as:

Su = { [xnj , ynj , dnj ] | nj ∈ N}, (10)

where [xnj
, ynj

, dnj
] stand for the position and request size

of user nj in a timeslot.
The action Au is denoted as:

Au = { πnj | πnj ∈ [0, numu], πnj ∈ Πu, nj ∈ N}. (11)

πnj
is the association strategy for user nj , which indicates

that user nj is associated with the πnj
closest BS. Mean-

while, numu stands for the number of BSs for each user to
select.

The DRL model for user association minimizes the sum
of working time for all BSs, so Ru is denoted as:

Ru(s, a) = { −
∑

mi∈M

twmi
| s ∈ Su, a ∈ Au}. (12)

Finally, the DRL model of user association updates by:

Eθu [∇θu logθu(s, a)R
θu
u (s, a)], (13)

and θu is the DRL weights of user association model.

Algorithm 1: Tandem Deep Reinforcement Learning
Input: 5G user and BS dataset which contain:

1) Two-dimensional position of BSs Xm,Ym

2) Two-dimensional position of Users Xn,Yn

3) request size of Users Dn

1 Initialize the T-DRL for user association and BS state
selection with random weights θu and θs

2 for episode=1,2,3,...,N do
3 for timeslot τ = 1, 2, ..., T do
4 for each user nj ∈ N do
5 User nj upload position xnj , ynj and request

size dnj to the T-DRL.
6 end
7 T-DRL forms users’ data into Su.
8 Put Su into the user association model.
9 Compute association strategies Au.

10 BSs establish associations according Au.
11 Calculate Ru according to equation (12)
12 Update θu according to equation (13)
13 for each BS mi ∈ M do
14 BS mi uploads the sum of users and workload

to the T-DRL.
15 end
16 Put Ss into BS state selection model.
17 Generate association strategies As.
18 Change BSs state according As.
19 Calculate Rs according to equation (16)
20 Update θs according to equation (17)
21 end

22 end

B. Deep Reinforcement Learning for BS State Selection

In BS state selection model, the state space Ss, action
space As and reward function Rs are expressed as follows.

The state space Ss is described as:

Ss = { [wmi
, smi

] | mi ∈ M}, (14)

where wmi and smi are the workloads and sum of users in
a timeslot served by BS mi. And the action As is:

As = { πmi | πmi ∈ [0, nums], πmi ∈ Πs,mi ∈ M}.
(15)

Since the BS states are defined in [19] and the activation
duration must be shorter than the timeslot set as 100ms, the
nums is fixed in the paper. Specifically, when πmi

= 0,
the BS mi selects idle state during sleep time, when πmi

=
1, 2, 3, the BS mi selects SS1, SS2 and SS3 respectively.

The DRL model for BS state selection minimizes the EDR
we proposed in equation (9), so the Rs is defined as follows:

Rs(s, a) = { −EDR | s ∈ Ss, a ∈ As}. (16)

Eventually, BS state selection DRL model updates by:

Eθs [∇θs logθs(s, a)R
θs
s (s, a)], (17)

where θs is the DRL weights of BS state selection model.
In summary, the T-DRL solves the energy consumption

and delay problems using the tandem-DRL models. By split
into two tandem models, the T-DRL can dually optimize
energy consumption and latency in a timeslot. Meanwhile,
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(a) Working Time in 5G Networks.
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Fig. 4. Simulation Results of User Association Model.

TABLE II
STATISTICS FROM 5G BASE STATIONS AND USERS DATA SET

Raw Data Details
Date 28/03/2021 - 28/05/2021
Raw Dataset Size 2.99 GB
Num. of Users in each timeslot 2500
Total Num.of Users 5500
Total Num.of Requests 4 Million
Total Num.of 5G BSs 278
Total Size of Downlink Data 1 PB

due to a tandem form, the optimization of the first model
further increases the effectiveness of the second, which
ultimately improves the final optimization of the DADEs.
The details of T-DRL refer to Algorithm 1.

V. SIMULATION RESULTS

A. Database Introduction

0.4cm The dataset contains 5G BSs and users data from
28th March 2021 to 28th May 2021, where the data of
5G BSs includes the geographic location, the number of
users served by each BS, and the size of workloads in 5G
networks. The dataset of users consists of the geographic
location and the request size. The statistics of the dataset are
shown in TABLE II, with around 2.99 GB of raw data. The
datasets are mainly used for model training and evaluation.

B. Simulation Setup

The DADEs and T-DRL are simulated and trained in a
virtual machine. To show the superiority of the T-DRL,
the random and the max-RSS algorithm [17] are used as
base models in the user association problem, and the greedy
[20] and single DRL algorithm [10] is additionally used as
baseline models in the BS state selection problem. In the
simulation, working time and EDR are used to evaluate the
performance of user association and state selection models.
Specifically, policy gradient (PG) is used as the DRL model.

In order to simulate a real 5G communication environ-
ment, the average data transmission rate and other parame-
ters are calculated by the real 5G dataset. Specifically, the
bandwidth Bm for each BS is 10 MHz, the length of timeslot
is 100ms [19], η equals 0.7 and numc is 4 [19].

C. Simulation Result

We compare the working time and the EDR with different
algorithms in the user association and BS state selection
problem. The strategies generated by the models are saved
and visualized through follow figures.

1) User Association Simulation:

In the user association simulation, Fig. 4(a) shows that
the DRL model converges after 100 episodes and reduces
the working time for BSs effectively. Due to the random
algorithm making strategies uncertainly, the working time is
much greater than others. In the max-RSS algorithm, all
users are associated with the fixed BS, which could not
reduce the working time effectively when the networks are
busy. In the T-DRL, most users are still associated with the
max-RSS BS. However, some users will be associated with
the other BS adaptively when the traffic increases, which
achieves the best performance in minimizing working time.

To reflect the superiority of the T-DRL, the workloads by
max-RSS and T-DRL are plotted. The performance is shown
in Fig. 4(b) and Fig. 4(c). The red hexagon represents the
high workload BS in these figures, which needs a longer time
to work. The yellow hexagon represents the mid workload
BS, and the green is the low workload BS. These figures
clearly show that when the number of users is fixed, the
number of high workload BSs in T-DRL is much less than
the max-RSS, and the user association is more balanced in
5G networks.

2) BS State Selection Simulation:

To evaluate the energy-saving and delay-aware perfor-
mance between different algorithms, the EDR is drawn in
Fig. 5(a). In this figure, the red line is the EDR in the
random algorithm where the BS selects states randomly. The
yellow stands for the EDR with the greedy algorithm that
BSs always choose the idle state after working if the η is
more than 0.5; otherwise, they will select SS3. Meanwhile,
to show the better performance of T-DRL, the single DRL
is also used as the baseline. The blue line describes the
EDR by the single DRL, and the green is the T-DRL we
proposed. The figure shows that the T-DRL achieves the
most incredible performance in EDR for 5G networks.
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(a) EDR in 5G Networks. (b) Energy Saving and Delay.
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Fig. 5. Simulation Results of BS State Selection Model.

Fig. 5(b) evaluates the adaptivity of energy-saving and
delay-aware between the T-DRL and others with different
delay sensitivity factors η in 5G networks. Fixed idle al-
gorithms maintain BSs on idle without consideration of η,
which achieves the lowest delay and most minuscule energy
saving, and the fixed SS3 is the contrary. Compared with the
fixed and greedy algorithms, single DRL and T-DRL control
BSs more adaptively by the delay sensitivity factor. And the
T-DRL performs better in energy-saving and delay than the
single DRL. The distributions of BS state selection strategies
by T-DRL are plotted in Fig. 5(c). When η approaches 1,
DADEs controls more BSs being idle to guarantee the low
delay in 5G networks. Conversely, when η comes to 0, major
BSs enter the deeper sleep state to save energy.

VI. CONCLUSION

In paper, we proposed a dual-adaptive delay-aware and
energy-saving system in 5G networks. Then we designed the
tandem deep reinforcement learning algorithm to optimize
the 5G BS energy consumption and delay. We use a real
5G dataset for training and evaluating the T-DRL model in
simulation. The simulation results show that with a different
delay sensitivity factor, DADEs with the T-DRL saves more
than 50% of energy with an adaptive delay in 5G networks
than the greedy, random and single-DRL algorithm.
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