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Abstract: This paper uses quantitative eye tracking indicators to analyze the relationship between
images of paintings and human viewing. First, we build the eye tracking fixation sequences
through areas of interest (AOIs) into an information channel, the gaze channel. Although this
channel can be interpreted as a generalization of a first-order Markov chain, we show that the gaze
channel is fully independent of this interpretation, and stands even when first-order Markov chain
modeling would no longer fit. The entropy of the equilibrium distribution and the conditional
entropy of a Markov chain are extended with additional information-theoretic measures, such as
joint entropy, mutual information, and conditional entropy of each area of interest. Then, the gaze
information channel is applied to analyze a subset of Van Gogh paintings. Van Gogh artworks,
classified by art critics into several periods, have been studied under computational aesthetics
measures, which include the use of Kolmogorov complexity and permutation entropy. The gaze
information channel paradigm allows the information-theoretic measures to analyze both individual
gaze behavior and clustered behavior from observers and paintings. Finally, we show that there is
a clear correlation between the gaze information channel quantities that come from direct human
observation, and the computational aesthetics measures that do not rely on any human observation
at all.

Keywords: eye tracking; entropy; gaze information channel; Markov chain; computational aesthetics;
Kolmogorov complexity; permutation entropy

1. Introduction

The eye is one of the most important organ for human beings to know the external things and
transmit information. The eye tracking system can track the trajectory of the eye, thereby obtaining
eye movement indicators such as the fixation position, the number of fixations, and fixation duration.
By the analysis of eye movement data, the subjective views can be obtained, so that we can expect to
improve our ability to measure the individual’s understanding of an image or a scene.

With more and more researchers using eye tracking technology as a research tool, eye tracking is
a promising method in academic and industrial research. It has the potential to provide insights into
many issues in the visual and cognitive fields: education [1–3], medicine [4–7], assistive technology for
people with a variety of debilitating conditions [8–10], better interface design [11–13], marketing and
media [14–16], and human–computer interaction method for making decisions [17–19]. Furthermore,
eye movement provides a new perspective and experimental method for cognitive research [20–22].

Thus, there is an increasingly urgent need for quantitative comparison of eye movement
indicators [23]. The scanpath map [24–27], heat map [28,29], and transition matrix [30] are several
important methods for analyzing the sequence of fixation. The scanpath map represents the fixations
as a sequential sequence, and vector- and character-based editing methods have been applied to
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calculate the similarity and difference of scanpaths. The heat map represents the eye movement data
as a Gaussian mixture model, but because this method loses the sequence information of the fixations,
the index based on the heat map can only reflect the similarity of different regions of the observed
image, and ignores the order of fixation.

Compared with heat map, modeling the gaze transitions as a first-order Markov chain transition
matrix between areas of interest (AOIs) preserves the gaze switch information. Thus, quantitative
analysis based on transition matrix, of which gaze entropy (the entropy of the Markov chain) is one
of the most important measures, has been used in recent years. Gaze entropy was first applied into
flight simulation in [31], although it is only in recent years that it has gained a growing interest from
researchers. Shiferaw et al. have recently reviewed and discussed gaze entropy in [32].

As a first-order Markov chain can be interpreted as an information channel, we proposed for
the first time the gaze information channel in [33], and applied it to study the artwork of Van Gogh.
In addition to incorporating the stationary entropy and gaze transition entropy, the gaze information
channel paradigm allows for additional information-theoretic measures to analyze the gaze behavior.
The new informational measures include joint entropy, mutual information, and normalized mutual
information. The gaze channel was further explored in [34], where the scientific posters cognition was
studied from the perspective of the gaze channel.

In this paper, we expand our previous work in [33,34] in several lines:

• Differently to the authors of [33,34], the gaze channel does not depend on the gaze sequences
being interpreted as a first-order Markov chain.

• We study images (artworks from Van Gogh) as in [33], versus posters containing text plus images
in [34].

• We study 12 Van Gogh artworks versus only three artworks, and 10 observers versus three
observers in [33].

• We use nine AOIs, versus only three in [33] and up to six in [34].
• We use regular grid division into AOIs, against predetermined in [34].
• We compare vertical division vs. horizontal division, allowing us an intuitive explanation of

mutual information.
• We present and interpret the evolution of gaze channel quantities with observation time.
• We compare and relate our results with informational aesthetics measures described in

the literature.

The rest of the paper is organized as follows. In Section 2, we present previous work on eye
tracking data analysis based on the transition matrices, in Section 3 we model the gaze sequences
between AOIs as an information channel, in Sections 4 and 5 we show experimental design and results
analysis, and conclusions and future work are presented in Section 6.

2. Background

Vandeberg et al. [35] used a multi-level Markov modeling approach to analyse gaze switch
patterns. After modeling the individuals’ gaze as Markov chains, Krejtz et al. [36,37] calculated the
entropy of the stationary distribution Hs and the transition or conditional entropy Ht to interpret
the overall distribution of attention over AOIs, as the Markov chain transition probability matrix
has a dual interpretation as a conditional probability matrix. Raptis et al. [38] asked the participants
to complete recognition tasks with various complexities, then the researchers used Hs and Ht to
eye tracking analysis; the result revealed there are quantitative differences on visual search patterns
among individuals. Raptis et al. [38] stated that eye gaze, including gaze entropies, fixation duration,
and number, can reflect personal differences in cognitive styles.

Zhong et al. [39] modeled the relationship between the image feature and the saliency as a Markov
chain, and in order to predict the transition probabilities of the Markov chain, they trained a support
vector regression (SVR) from true eye tracking data. At last, when given the stationary distribution of
this chain, a saliency map of predicting user’s attention can be obtained.
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Huang [40] used the female gaze data of browsing apparel retailers’ web pages to study how
the female attention was influenced by visual content composition and slot position in personalized
banner ads. Gu et al. [30] used heatmap entropy (visual attention entropy (VAE)) and its improved
version, relative VAE (rVAE) to analyze eye tracking data of observing web pages; the result showed
that VAE and rVAE have correlation with the perceived aesthetics. Hwang et al. [41] stated that it
is important to notice scenes consist of objects representing not only low-level visual information,
but also higher-level semantic data, and they presented transitional semantic guidance computation to
estimate gaze transition.

Ma et al. [33] introduced the gaze information channel using Van Gogh paintings, and, based on
preliminary results, observed that we can give a coherent interpretation to the channel quantities
to both classify the observers and the artworks. Hao et al. [34] tracked observers’ eye movements
for reading scientific posters, which contain both text and data, and modeled eye tracking fixation
sequences between AOIs as a Markov chain and subsequently as an information channel to find
quantitative links between eye movements and cognitive comprehension. The AOIs were determined
by the design of the poster.

3. Methodology

3.1. Gaze Information Channel

Given an image I, divided it into s AOIs, where the set of AOIs is S = 1, 2, . . . , s, let us build a
matrix C of successively visited AOIs. Thus, element ij in matrix C, cij, will correspond to how many
times the AOI j has been visited immediately after AOI i was visited, that is, how many times there
has been a direct transition from i to j. This information is extracted from the recorded gaze sequences.
Observe that ∑j cji gives the total number of times AOI i was visited. Observe also that if we consider
an additional fictional AOI, let us say AOI number “0”, that represents both the initial state before our
gaze lands on the painting and the final state when our gaze leaves the painting, then the number of
exits and number of entries on any state have to be the same, this is ∑j cij = ∑j cji for all i and j. If the
trajectories are not short, ∑j cij ≈ ∑j cji, for practical purposes we can consider them equal and ignore
AOI “0”. Observe that matrix C can be considered as the realization of a joint occurrence of random
variables X and Y, (X, Y), where each pair (x, y) represents the occurrence of the gaze entering AOI x
and leaving for AOI y. Let N = ∑i ∑j cij, Ni = ∑j cij, and Nj = ∑i cij, then the joint probabilities can be
constructed as p(i, j) = cij/N, the conditional probabilities matrix P as pij = p(j|i) = cij/Ni, and the
marginal probabilities p(X) = p(Y), as pi = Ni/N. Observe that by construction p(X)P = p(Y).
We have thus built an information channel [42] between the S areas of interest to itself. Observe
that this information channel can be considered too as a first-order Markov chain with equilibrium
distribution π = p(X) = p(Y) and transition matrix P. In our previous work [33,34], we introduced
the gaze information channel from the first-order Markov chain, while here we introduce first the
information channel. The difference is not trivial, as when directly introducing the information channel
we do not mind whether the gaze sequences follow a first-order or a higher-order Markov chain.
However, even if the gaze does follow a higher order than first-order Markov chain, it is still possible
by what we have shown before to model gaze sequences as a first-order Markov chain. In that case,
the transition probabilities between states should be understood as the average ones. Given AOI i,
pij would give then the average transition probability to AOI j, as the transition probabilities would
depend on the given instant of the total observation time, and might change from the first seconds of
observation to later seconds. Previous work has considered the gaze transitions as a first-order Markov
chain [32].

According to the strategy of dividing into AOIs, there are mainly content-dependent AOIs and
grid AOIs. In this paper, grid AOIs are used.
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3.2. Gaze Information Channel Measures

In this section, Shannon’s information measures [42] for gaze information channel are introduced.
In addition to the gaze stationary entropy Hs and gaze transition entropy Ht used in previous work [36],
the gaze information channel makes it possible to introduce more informational measures to study the
eye movement data. In the information channel, the stationary entropy Hs is defined as

Hs = H(X) = H(Y) = −
s

∑
i=1

πi log πi, (1)

and gives the uncertainty of the distribution of the gaze between the AOIs.
The entropy of ith row, H(Y|i), is defined as

H(Y|i) = −
s

∑
j=1

pij log pij, (2)

and gives the uncertainty about the next AOI when the current gaze location is the i-th AOI.
The conditional entropy Ht of the information channel is given by the weighted average values of

H(Y|i),

Ht = H(Y|X) =
s

∑
i=1

πi H(Y|i) = −
s

∑
i=1

πi

s

∑
j=1

pij log pij, (3)

and represents the randomness or uncertainty of next gaze transition for all AOIs.
The joint entropy H(X, Y) of the information channel is the entropy of the joint distribution of X

and Y,

H(X, Y) = H(X) + H(Y|X) = Hs + Ht =
s

∑
i=1

s

∑
j=1

πi pij log
(
πi pij

)
, (4)

and measures the total uncertainty of the information channel. Observe that, being for the gaze
information channel p(X) = p(Y) = π, then H(X) = H(Y), and as H(X, Y) = H(Y, X) then
H(Y|X) = H(X|Y).

The mutual information I(X; Y), given by

I(X; Y) = H(X) + H(Y)− H(X, Y) =
s

∑
i=1

s

∑
j=1

πi pij log
pij

πj
, (5)

indicates the total correlation, or information shared, between the AOIs.
The relationship between information measures can be illustrated by a Venn diagram, as shown

in Figure 1. The diagram represents the relationship between Shannon’s information measures.

I(X;Y)=H(X)+X(Y)-H(X,Y)=H(X)-H(X|Y)

H(X,Y)

H(X) H(Y)

H(X|Y) H(Y|X)I(X;Y)

Figure 1. The information diagram represents the relationship between information channel measures.
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3.3. Informational Aesthetics Measures

To study the evolution of Van Gogh’s style, Jaume Rigau et al. [43–47] used a quantitative
approach based on aesthetic measures, including palette-based relative redundancy Mb, Kolmogorov
complexity-based redundancy Mk, and the number of regions for a given ratio of mutual information Ms.

Given a color image of N pixels, where C represents the palette distribution (Xrgb with 2563 = 224

colors or Xl with 256 = 28 luminance values) , the palette entropy H(C) stands for the uncertainty of a
pixel, and the maximum entropy Hmax is 24 (Xrgb) and 8 (Xl), respectively. The relative redundancy
Mb is defined as

Mb =
Hmax − H(C)

Hmax
, (6)

where Mb ranges in [0, 1] and represents the reduction of pixel uncertainty due to the choice of a
palette with a given color probability distribution instead of a uniform distribution. Observe that
Mb is similar to the redundancy per character of a natural language [48] and corresponds to Bense’s
information theoretic interpretation [49] of Birkhoff’s aesthetic measure [50].

From the perspective of Kolmogorov complexity, an image’s order or regularity can be
measured by the difference between the image size N × Hmax and its Kolmogorov complexity K(I).
The normalization of the order gives us the aesthetic measure

Mk =
N × Hmax − K(I)

N × Hmax
(7)

where Mk ranges in [0, 1] and represents the degree of the order of the image without any prior
knowledge of the palette. Note that the higher the order of the image, the higher the compression ratio.

We can segment an image into regions. The coarsest segmentation is to consider the whole image
as a single region, and the finest segmentation would be to consider as many segments as pixels in the
image. Given a segmentation, we represent by R the normalized areas of the regions. A given region
can contain pixels of different colors from the palette C. Thus, an information channel between colors
C and regions R can be established. The mutual information between C and R is given by

I(C, R) = ∑
c∈C

∑
r∈R

p(c, r) log
p(c, r)

p(c)p(r)
(8)

For a decomposition of an image into n regions, the ratio of mutual information is defined by

Ms(n) =
I(C, R)
H(C)

, (9)

and ranges from 0 to 1. When we have one single region the mutual information is 0, and thus the
ratio is 0. When we have as many regions as pixels we have captured the whole correlation of the
image, I(C, R) = H(C) and the ratio is 1. We are interested in how many segments n we need to
divide the single image to arrive at a given percentage of mutual information. This is given by the
inverse function

M−1
s (

I(C, R)
H(C)

) = n, (10)

and is interpreted as a measure of image compositional complexity.
In addition to the above measures, Sigaki et al. [51] presented a quantitative analysis of art by

estimating the permutation entropy and the statistical complexity of a painting, considered, as in the
above measures, as an array of pixel values. Given a Nx × Ny image as a two-dimensional array,
subarrays of size dx× dy are considered as a single sequence of dx× dy components, and the possible
order of the values of each sequence is classified into one of the n = (dxdy)! possible orderings.
For instance, for dx = dy = 2 we have 4! = 16 possible orderings. All possible, overlapping, dx× dy
subarrays are considered, and finally after normalization we will have a distribution P which represents
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the order of neighbor pixel values in the image, P = {pi; i = 1, ..., n}. The only parameters of the
method are the dx, dy values, also called embedding dimensions (for a more formal description, please
refer to the work in [51,52]).

Then, the normalized permutation entropy PE is calculated by dividing the Shannon entropy
S(P) of P distribution,

S(P) = −
n

∑
i=1

pi log pi, (11)

by its maximum possible value log(n),

PE(P) =
S(P)

log(n)
(12)

Sigaki et al. [51] argue that although the value of PE is a good measure of randomness, it cannot
fully capture the degree of structural complexity present in the image matrix. Therefore, they further
calculated the so-called statistical complexity C(P)

C(P) =
Q(P, U)PE(P)

Qmax
(13)

where Q(P, U) is a relative entropic measure (the Jensen–Shannon divergence) between P = {pi; i =
1, ..., n} and the uniform distribution U = {ui = 1/n; i = 1, ..., n}, and computed as

Q(P, U) = S(
P + U

2
)− S(P)

2
− S(U)

2
(14)

where P+U
2 = { pi+1/n

2 , i = 1, ..., n} and

Qmax = −1
2
{n + 1

n
log(n + 1) + log(n)− 2 log(2n)} (15)

is a normalization constant obtained by calculating Q(P, U).

4. Experimental Design

4.1. Participants

Twelve Master’s students from Tianjin University were selected to take part in the experiment.
All participants had normal or corrected-to-normal vision. Twenty minutes before the start of the
experiment, all participants were forbidden to play on mobile phones or perform reading activities
that may cause visual fatigue, and to perform eye exercises, such as activities that can relax the eyes
and mind and body. The data from two participants had to be excluded because their eye tracking rate
was below 98%. Finally, eye movement data of 10 students (6 females, 4 males, average age 24.8) were
available for the study.

4.2. Stimuli

The stimuli are 12 paintings of Vincent Van Gogh in digital format. Van Gogh’s paintings
are classified into six periods, which follow chronological order, as Earliest Paintings (1881–1883),
Nuenen/Antwerp (1883–1886), Paris (1886–1888), Arles (1888–1889), Saint-Remy (1889–1890),
and Auvers-sur-Oise (1890), respectively. The paintings are divided in two groups (a and b) as
shown in Figure 2. Both groups include 6 representative paintings of each period (periods numbered
from 1 to 6). We have considered the two groups of paintings used by Feixas et al. [53], which gives
the values of the measures (Mb, Mk, Ms) for the 12 paintings. The 12 paintings were downloaded from
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The Vincent Van Gogh Gallery of David Brooks, http://www.Vggallery.com , a website remaining the
most thorough and comprehensive Van Gogh resource on the World Wide Web.

(a1) (b1) (a2) (b2)

(a3) (b3) (a4) (b4)

(a5) (b5) (a6) (b6)

Figure 2. Group a and b of representative paintings of each period are shown (chronologically ordered
from period 1:(a1&b1) to period 6:(a6&b6), Copyright 1996–2010 DavidBrooks). The values of MB, MK ,
and M−1

s (0.25) are labeled for each painting. (a1) Fisherman’s Wife on the Beach, 1882 (0.418, 0.759,
1264). (b1) Two women in the Woods, 1882 (0.310, 0.650, 2020). (a2) Shepherd with a Flock of Sheep,
1884 (0.463, 0.739, 875). (b2) The Potato Eaters, 1885 (0575, 0.850, 1417). (a3) The Seine with the Pont de
la Grande Jette, 1887 (0.385, 0.718, 1396). (b3) Self-Portrait with Straw Hat, 1887 (0.295, 0.726, 1272).
(a4) Sunset: Wheat Fields Near Arles, 1888 (0.345, 0.697, 1648). (b4) Vase with Fifteen Sunflowers,
1888 (0.349, 0.581, 2736). (a5) Olive Grove: Pale Blue Sky, 1889 (0.339, 0.593, 2456). (b5) Starry Night,
1889 (0.322, 0.594, 1758). (a6) Daubigny’s Garden, 1890 (0.315, 0.714, 2375). (b6) Thatched Cottages at
Cordeville, 1890 (0.312, 0.592, 2095).

4.3. Apparatus

The experiment used a mobile eye tracking device SMIETG2w produced by the German SMI
company. This eye tracker’s two non-contact infrared cameras (60/120 Hz) can capture images of the
observer’s eyes, and calculate eye movements in real-time based on the pupil and corneal reflection
principles. Another camera of the eye tracker can record image scene that the observer is viewing.

http:// www. Vggallery.com
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In addition, the eye tracker is also equipped with a USB cable to transfer the data collected by the
camera to the eye tracking control system.

The eye tracking control system is a high-performance workstation installed with IView X software.
The video data collected by the eye movement instrument is integrated into the workstation for image
data analysis after MPEG coding. Eye movement data acquisition software IView X can complete the
fixation point calibration before formal observation. In our work, we adopted three-point calibration
with higher accuracy. After the data collection is completed, the Begaze software can be used to
generate fixation position.

4.4. Procedure

The calibration picture and the 12 Van Gogh paintings used in the formal experiment were
presented on a computer monitor (1920× 1080 resolution; 23.8-inch LCD). The participant was invited
to sit in a chair in front of the monitor, their eyes about 60 to 80 cm away from the screen, and chin
resting on a fixed bracket. Then, the staff used the IView X software to make 3-point calibration for each
participant. After calibration, the Van Gogh paintings were displayed in full screen, in random order.
The observation time of each painting is 45 s, there are 10 s for rest after each painting is displayed,
and the viewing mode is free-viewing, that is, no viewing task is assigned to the observer. Before the
observation, the researcher does not disclose any information about the painting to be observed to the
participant, which aims to reduce the influence of top-down factors and facilitate the analysis of the
relationship between human eye behavior and the painting content itself.

5. Result Analysis

5.1. Channel Measures Analysis with 9 AOIs

Each painting was divided into nine AOIs (as shown in Figure 3). This number of AOIs
is a compromise between the detail we look in the analysis and the sparseness of the transition
matrices. In order to demonstrate the differences when observing each painting, for each AOI, we add
the fixations of the 10 observers together, then we use the gaze information channel (as shown in
Figure 4) to compute the clustered entropy and MI for each painting. The clustered values for all
observers are shown in the Appendix A in Tables A1–A12. We have built the equilibrium distribution
π = p(X) ≈ p(Y) by normalizing the row totals. Table 1 shows the values of entropy, MI, normalized
MI, and the aesthetics measures from Section 3.3 for the 12 paintings. The validity of the clustering
strategy was shown in [34]. From Figure 5 left, we can observe that there is little variation of H(X),
while there is an important variation of H(X, Y) values, mainly due to the variation of H(X|Y) (as
H(X, Y) = H(X) + H(X|Y)). The values of H(X|Y) have a tendency to decrease from left to right,
according to the chronological order of the paintings. From Figure 5 right we observe an increase
in mutual information, attenuated in the case of normalized one. Remembering that paintings are
ordered according to the evolution in the time of Van Gogh styles, and the interpretation of H(X|Y) as
randomness and of I(X, Y) as correlation between the AOIs of the painting, Van Gogh style evolution
towards its maturity, with richer compositions, is reflected in an increase of mutual information in the
gaze channel.

Next, in order to study the individual differences between observers, the clustered entropy and MI
for each observer are computed: for each AOI, we add the fixations of 12 paintings together, then use
the gaze information channel compute the clustered entropy and MI for each painting. Table 2 shows
the clustered entropy and MI for 10 observers, and Figure 6 shows the clustered entropies and MI.

Comparing Figure 6 with Figure 5, it can be inferred that there is not as much difference between
observers as there is between paintings. In Table 2, similar to Table 1, the standard deviation of H(X)

is the lowest among H(X), H(X|Y) and H(X, Y) values, thus the differences happen more in gaze
switch among AOIs (given by H(X|Y)) than in the attention distribution among AOIs (given by H(X)).
Moreover, from Figure 6 left, it can be observed that the H(X), H(X|Y) and H(X, Y) present close
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values for the different observers. Figure 6 right shows that the main differences between observers
can be found in the values of mutual information, with basically two kind of observers: ones with
lower MI, around 1.2, and the other ones with higher MI, around 1.4. These differences are smoothed
down when considering normalized MI.

Figure 3. An example painting divided in the 9 AOIs.

Figure 4. The gaze information channel for painting b5 with 9 AOIs, between the AOIs with equilibrium
distribution (a,c) and information channel X → Y (b). Observe that the input (a) and output
(c) distributions are the same.

Figure 5. The clustered entropies (left) and clustered MI values (right) of 12 paintings.
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Table 1. The clustered entropies, MI, Mk, Mb, and M−1
s , for 12 paintings.

ID H(X) H(X|Y) H(X, Y) I(X; Y) Normalized
MI by H(X)

Mk Mb M−1
s

a1 2.8246 1.6747 4.4993 1.1499 0.4071 0.759 0.418 1264
b1 3.1072 1.9764 5.0835 1.1417 0.3674 0.650 0.310 2020

a2 2.9821 1.7874 4.7695 1.1930 0.4000 0.739 0.463 875
b2 2.9958 1.4709 4.4667 1.5244 0.5088 0.850 0.575 1417

a3 2.8518 1.5188 4.3706 1.3336 0.4676 0.718 0.385 1396
b3 2.9251 1.6460 4.5711 1.2799 0.4375 0.726 0.295 1272

a4 3.0384 1.6874 4.7259 1.3591 0.4473 0.697 0.345 1648
b4 3.0211 1.7187 4.7399 1.3039 0.4316 0.581 0.349 2736

a5 2.9510 1.4157 4.3667 1.5296 0.5183 0.593 0.339 2456
b5 3.1591 1.6422 4.8013 1.5174 0.4803 0.594 0.322 1758

a6 3.1250 1.4451 4.5702 1.6797 0.5375 0.714 0.315 2375
b6 3.1379 1.7465 4.8844 1.3906 0.4432 0.592 0.312 2095

Average Value 3.0099 1.6441 4.6541 1.3669 0.4539 0.684 0.369 1776
Standard Deviation 0.1054 0.1547 0.2084 0.1615 0.0488 0.080 0.078 542

Table 2. The clustered entropies and MI for 10 observers.

ID H(X) H(X|Y) H(X, Y) I(X; Y) Normalized MI
by H(X)

observer1 3.0243 1.7807 4.8049 1.2444 0.4115

observer2 3.0720 1.8207 4.8926 1.2531 0.4079

observer3 3.1014 1.7515 4.8529 1.3514 0.4357

observer4 3.0953 1.8891 4.9844 1.2048 0.3892

observer5 3.0950 1.7306 4.8257 1.3639 0.4407

observer6 3.1359 1.8256 4.9615 1.3090 0.4174

observer7 3.1335 1.9187 5.0522 1.2155 0.3879

observer8 3.1296 1.7296 4.8592 1.3986 0.4469

observer9 3.1534 1.7098 4.8631 1.4440 0.4579

observer10 3.1200 1.6647 4.7847 1.4557 0.4666

Average Value 3.1060 1.7821 4.8881 1.3240 0.4262
Standard Deviation 0.0357 0.0767 0.0811 0.0879 0.0261

Figure 6. The clustered entropies (left) and clustered MI values (right) for 10 observers.
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5.2. Comparison of Horizontal with Vertical Division

When reading text, human eye movement behavior is greatly affected by the direction of text
layout. For example, if the text is arranged as usually in horizontal lines, our eyes will move in
horizontal direction during reading. However, the direction of eye movement is more unpredictable
when viewing images or paintings. Because of the differences in the content of the paintings,
the observer’s attention distribution in different areas will be different. Therefore, in order to study
the characteristics of the observer’s gaze switch and attention distribution, according to a different
division into AOIs, we compared gaze entropy and mutual information values obtained in horizontal
and vertical divisions into three AOIs, see Figure 7.

As done for nine AOIs, the gaze sequences of the 12 paintings are integrated, and gaze channel
measures of each observer are calculated under horizontal and vertical divisions, respectively,
to analyze the characteristics of eye movement behavior of each observer. Similarly, to obtain the gaze
measures for each painting, the gaze sequences of the 10 observers are firstly integrated, and then
processed with the gaze information channel based on horizontal and vertical division AOIs.

Figure 7. An example of horizontal division (left) and vertical division (right) with 3 AOIs.

Figure 8 gives the clustered gaze information measures H(X), H(X|Y), H(X, Y), and I(X; Y) from
all observers under the horizontal and vertical division. For the vertical division, the entropies (H(X),
H(X|Y) and H(X, Y)) are higher than the entropy measures of horizontal division, while the mutual
information I(X; Y) from observers is lower in general under the vertical division, except for observer1.
The larger mutual information represents the stronger relevance of the gaze in the area of horizontal
division, so it can be concluded that gaze shift is more likely to occur in the horizontal direction.

Figure 9 presents the clustered gaze information measures H(X), H(X|Y), H(X, Y), and I(X; Y)
of the 12 paintings under horizontal and vertical division. Similar to Figure 8, for most paintings,
the gaze measures H(X), H(X|Y), and H(X, Y) generated by vertical division are higher than for
horizontal division, while the mutual information is lower than for horizontal division. However,
painting a1 and painting b2 do not follow this rule, as the H(X) and H(X, Y) of painting a1 are higher
in horizontal than vertical division, and the difference for H(X|Y) of painting a1 between horizontal
and vertical division is the smallest of all paintings. On the other hand, for painting b2, all four
measures (H(X), H(X|Y) , H(X, Y), and I(X; Y)) have the opposite rules than for the other paintings.

For the difference of gaze measures caused by the two division types in Figures 8 and 9, we can
forward the following explanation; on the one hand, the difference between the results of horizontal
and vertical division is related to people’s inherent reading mode, and thus when the area of interest is
divided horizontally, the number of gaze switches between different AOIs is relatively small, that is,
the H(X|Y) value is low. On the other hand, the painting content also has an important impact on the
eye movement mode. For paintings a2 and a4 (as shown in Figure 2), the horizontal division splits
coherently the sky and the field, with higher mutual information, while the vertical line cuts off the
continuous scene, resulting in higher entropy measures and lower mutual information. For paintings
a1 and b2 (as shown in Figure 2), the main body of the picture is the person. In the process of
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observation, people tend to observe the coherent content continuously, so the gaze shift occurs more in
the vertical direction.

5.3. Comparison with Different Varying Observation Time

Figure 10 are line charts of 12 paintings with entropies and MI for different observation time.
It can be seen that the H(X), H(X, Y), and I(X; Y) basically present an increasing trend until a stable
value is reached. First, the global scanning of image over the time is illustrated by the change of H(X),
which gradually increases and tends to be stable, indicating that the distribution of fixation points
are more evenly between the different AOIs. This increase in H(X) pushes the increase of H(X, Y).
On the other hand, the increase in I(X; Y) tends to correspond to a decrease in H(X|Y). The more
we explore the image, the more correlation, or mutual information, we can discover, and the less
the uncertainty in exploration, given by H(X|Y). We could thus divide observation behavior into
two stages. In a first stage the observer will scan the image globally, without a specific aim or plan,
and after that, the observer will focus on more details and in correlations within the image. This fits
with the observations by Locher et al. [54,55].

(a) (b)

(c) (d)

Figure 8. The clustered gaze measures for all observers under horizontal and vertical division: (a) H(X),
(b) H(X|Y) , (c) H(X, Y), (d) I(X; Y).
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(a) (b)

(c) (d)

Figure 9. The clustered gaze measures for all paintings under horizontal and vertical division: (a) H(X),
(b) H(X|Y), (c) H(X, Y), (d) I(X; Y).

(a) (b)

(c) (d)

Figure 10. The line charts of 12 paintings with entropies and MI of different observation time: (a) H(X),
(b) H(X|Y), (c) H(X, Y), (d) I(X; Y).
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5.4. Comparison with Aesthetic Measures

In this section, we study the relationship of gaze channel measures with the information aesthetics
measures from Section 3.3. In Table 1, the values of entropy, MI, Mk, Mb, and Ms are given for the
12 paintings.

5.4.1. Comparison with Mb

Figure 11 shows the line charts of Mb and entropies and normalized MI for the 12 paintings.
We see that the behavior of Mb is rather opposite to the behavior of entropies, and presents some
similarity with normalized mutual information. This can be interpreted as the measure Mb representing
correlation or redundancy in the scene. In fact, from its definition, Mb is the normalized difference
between the maximum entropy of the color histogram and the color histogram used in the painting,
and thus represents the redundancy existing in the palette used, giving a certain measure of
correlation. However, Mb does not take into account any spacial order, thus we can not expect
any accurate correlation.

(a) (b)

(c) (d)

Figure 11. Comparing Mb with entropies and normalized mutual information of paintings:
(a) Mb and H(X), (b) Mb and H(X|Y), (c) Mb and H(X, Y), (d) Mb and normalized MI.

5.4.2. Comparison with Mk

From information theory perspective, the positive correlation shown in Figure 12d between
normalized MI and Mk can be explained by the theoretical correspondence or similarity between the
entropy rate expressed by H(Y/X) and the Kolmogorov complexity K(I) approximated by the file
length of the compressed image. Let us remember that MK is given by 1− K(I)

N×Hmax
and normalized

MI by 1− I(X;Y)
H(X)

. Thus, instead of analyzing the correlation between normalized MI and Mk, we can
equivalently analyze the relationship between the entropy rate and the Kolmogorov complexity.

Both measures express, from two different perspectives, the notion of compression. On the one
hand, the entropy rate H(Y/X) of a communication process quantifies the irreducible randomness in
sequences produced by a source and also measures the size, in bits per symbol, of the optimal binary
compression of the source [56]. Thus, a process highly random is difficult to compress. On the other
hand, as mentioned above, the Kolmogorov complexity represents the difficulty in compressing an
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image, expressed by a set of bits which describes both its regularities and its random part. In our case,
these measures are normalized in order to carry out a comparative study.

We visualize also in Figure 13 the change of normalized mutual information versus the increase
in viewing time from 5 s, 15 s, to 45 s, the value of gaze mutual information will also change.

(a) (b)

(c) (d)

Figure 12. Comparing Mk with entropies and normalized mutual information of paintings: (a) Mk and
H(X), (b) Mk and H(X|Y), (c) Mk and H(X, Y), (d) Mk and normalized MI.

Figure 13. Comparison Mk and normalized MI by H(X) at different observation times.

5.4.3. Relationship with M−1
s

We can find an indirect relationship of gaze information channel measures with M−1
s . If we look

in [53] at the spatial division triggered by the color to region channel, we can see that the first divisions,
which give the maximum increase in mutual information, are triggered along horizontal divisions.
This is fully in concordance with the findings in Section 5.2.

5.4.4. Comparison with PE and C

Table 3 shows the values of MI, Mk, permutation entropy PE, and complexity C for the 12
Van Gogh paintings considered. These values are displayed in Figure 14. We can observe that the MI,
Mk and complexity C have similar curves pattern, but permutation entropy PE behavior is different.
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In fact, we can observe that C behavior is C ≈ 1− PE, see Figure 15. This can be explained as follows.
The behavior of the normalized Jensen–Shannon distance Q(P; U) is similar to 1− PE, and thus C,
defined by Equation (13), can be approximated by C ≈ (1− PE)PE, and for values of PE near 1 as
it is our case C ≈ (1− PE). This is illustrated in Figure 15. We display in Figure 16 the normalized
H(X|Y) (normalized H(X|Y) + normalized I(X, Y) =1), 1−Mk and PE. The correspondence between
normalized H(X|Y) and 1−Mk is the same as between normalized I(X, Y) and Mk. However, observe
now the correspondence with PE too. Correspondence between the Kolmogorov complexity measured
by compressibility, 1−Mk, and the normalized permutation entropy, PE was somehow to be expected,
as PE measures [51], the degree of disorder in the pixel arrangement of an image, and the more
disorder we can expect less compressibility and bigger size of compressed file, and vice versa.

Table 3. The MI, Mk, permutation entropy PE and complexity C for 12 paintings.

ID Normalized
MI by H(X)

Mk PE C

a1 0.4071 0.759 0.9777 0.0279
b1 0.3674 0.650 0.9924 0.0097

a2 0.4000 0.739 0.9621 0.0493
b2 0.5088 0.850 0.9154 0.1044

a3 0.4676 0.718 0.9518 0.0601
b3 0.4375 0.726 0.9231 0.0981

a4 0.4473 0.697 0.9140 0.1051
b4 0.4316 0.581 0.9973 0.0036

a5 0.5183 0.593 0.9940 0.0078
b5 0.4803 0.594 0.9760 0.0316

a6 0.5375 0.714 0.9260 0.0919
b6 0.4432 0.592 0.9867 0.0172

Average Value 0.4539 0.6844 0.9597 0.0506
Standard Deviation 0.0488 0.0800 0.0311 0.0383

Figure 14. Comparison of normalized MI by H(X), Mk, permutation entropy PE and complexity C.
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Figure 15. Illustration of the dependency of C vs PE for the values corresponding to the 12 paintings.

Figure 16. Comparing normalized H(X|Y) by H(X), 1−Mk and permutation entropy PE of paintings.

6. Conclusions and Future Work

This paper uses quantitative indicators based on gaze information channel to study the
relationship between Van Gogh artworks and human viewing. The eye tracking fixation sequences
through areas of interest (AOIs) are modeled as an information channel, which extends the Markov
chain modeling of those sequences.

For our study, we have used 12 Van Gogh paintings, two from each of the six periods in which
critics classify Van Gogh art work. We have first shown that, with nine AOIs, the measures discriminate
better between the different paintings than between the different observers. Then we have compared
the values obtained with horizontal and vertical division into three AOIs, and found that in general
the mutual information is higher for horizontal division. This can be put in correspondence with the
semantic content of the painting.

Finally, we have compared previously defined computational measures to study artworks with
the measures derived from the information channel paradigm. We have shown the relationship
between the computational measures, which are independent of any observer, and the information
channel measures, which come from the eye trajectories from human observers. In particular we have
found a striking visual correlation between the measure Mk which is related to the compressibility and
the normalized mutual information MI, and inversely, between the normalized entropy of the channel,
Mk, and the permutation entropy, used recently to classify artworks.

Although promising, this paper has some limitations such as a small number of participants
and paintings. With more data we could study quantitatively the correlations in addition to visually.
Moreover, a larger variety of persons (e.g., laypersons vs. experts as in [57]) or painting styles



Entropy 2020, 22, 540 18 of 23

(e.g., abstract vs. representational as in [58]) can be considered, as well as the aesthetic evaluation of
the paintings by the observer. In the future, we will continue to explore the unique significance of
human visual search patterns, which need to be paired with behavioral or cognitive metrics.
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Appendix A

Table A1. The (unnormalized) transition matrices (9× 9) of painting a1.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 11 6 2 5 0 0 0 0 0 24
AOI2 7 114 8 5 30 2 1 2 0 169
AOI3 2 8 12 0 3 7 0 0 0 32
AOI4 3 3 1 64 20 9 4 1 1 106
AOI5 1 27 0 16 134 15 1 23 0 217
AOI6 0 8 9 2 11 86 0 3 5 124
AOI7 0 0 0 6 1 1 28 14 0 50
AOI8 1 2 0 6 18 1 14 117 7 166
AOI9 0 0 0 1 0 4 2 7 13 27
Total 25 168 32 105 217 125 50 167 26 915

Table A2. The (unnormalized) transition matrices (9× 9) of painting a2.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 17 1 1 9 1 1 1 0 0 31
AOI2 7 12 1 2 0 10 0 1 0 33
AOI3 0 8 8 0 0 0 2 0 0 18
AOI4 4 0 1 60 10 9 0 4 0 88
AOI5 1 1 0 9 34 1 0 8 2 56
AOI6 1 6 1 10 5 73 6 12 5 119
AOI7 0 0 5 1 0 10 22 0 3 41
AOI8 0 2 0 2 4 8 2 40 11 69
AOI9 1 1 1 1 2 2 8 6 42 64
Total 31 31 18 94 56 114 41 71 63 519

Table A3. The (unnormalized) transition matrices (9× 9) of painting a3.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 45 8 0 14 3 0 0 0 0 70
AOI2 8 25 7 1 16 2 1 0 0 60
AOI3 0 6 20 0 0 4 0 0 0 30
AOI4 10 4 0 118 16 1 12 5 1 167
AOI5 3 15 1 23 186 30 3 14 1 276
AOI6 1 1 0 1 33 168 0 2 10 216
AOI7 2 0 0 7 6 1 50 16 1 83
AOI8 1 1 0 2 16 3 17 90 4 134
AOI9 0 0 2 0 0 8 0 6 22 38
Total 70 60 30 166 276 217 83 133 39 1074
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Table A4. The (unnormalized) transition matrices (9× 9) of painting a4.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 115 22 2 17 2 0 4 0 1 163
AOI2 24 120 17 3 15 2 0 0 3 184
AOI3 0 22 160 3 4 5 1 0 2 197
AOI4 14 1 1 44 19 1 7 2 2 91
AOI5 3 16 5 15 74 17 2 3 2 137
AOI6 0 2 7 3 13 41 1 3 6 76
AOI7 2 1 2 3 1 1 41 12 2 65
AOI8 0 0 1 2 5 2 8 29 15 62
AOI9 0 0 1 1 4 7 2 13 48 76
Total 158 184 196 91 137 76 66 62 81 1051

Table A5. The (unnormalized) transition matrices (9× 9) of painting a5.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 22 10 0 6 3 0 2 3 3 49
AOI2 7 26 7 1 8 0 1 0 1 51
AOI3 1 7 34 0 2 6 0 0 0 50
AOI4 10 0 1 101 15 0 8 0 0 135
AOI5 2 3 0 21 139 18 4 5 8 200
AOI6 1 1 5 0 19 206 0 1 20 253
AOI7 0 2 0 4 4 1 87 13 1 112
AOI8 0 0 2 0 7 1 11 60 14 95
AOI9 5 0 0 0 3 23 0 15 73 119
Total 48 49 49 133 200 255 113 97 120 1064

Table A6. The (unnormalized) transition matrices (9× 9) of painting a6.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 73 7 4 0 1 13 0 0 0 98
AOI2 10 85 22 0 9 2 0 0 1 129
AOI3 1 29 148 9 6 13 3 3 13 225
AOI4 0 1 15 109 17 0 0 21 0 163
AOI5 1 6 2 25 111 0 0 0 1 146
AOI6 13 2 13 0 1 99 14 0 2 144
AOI7 0 1 2 1 1 16 81 0 13 115
AOI8 0 0 2 19 0 0 0 71 12 104
AOI9 0 0 17 0 0 1 16 8 91 133
Total 98 131 225 163 146 144 114 103 133 1257

Table A7. The (unnormalized) transition matrices (9× 9) of painting b1.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 88 8 18 19 3 1 2 0 3 142
AOI2 5 40 13 2 7 15 0 1 1 84
AOI3 16 15 61 1 12 3 0 0 1 109
AOI4 22 2 3 67 6 0 15 3 0 118
AOI5 4 9 10 7 54 8 0 5 0 97
AOI6 0 8 4 1 6 28 1 2 14 64
AOI7 1 0 0 13 0 2 35 16 3 70
AOI8 0 1 0 5 6 2 14 27 10 65
AOI9 1 1 0 0 3 8 3 11 34 61
Total 137 84 109 115 97 67 70 65 66 810
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Table A8. The (unnormalized) transition matrices (9× 9) of painting b2.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 55 11 0 13 2 0 1 0 0 82
AOI2 12 122 8 4 19 2 0 0 1 168
AOI3 0 11 50 0 1 12 0 1 1 76
AOI4 13 3 1 123 22 1 16 6 1 186
AOI5 2 18 0 26 248 10 2 39 3 348
AOI6 0 0 15 1 12 109 0 2 18 157
AOI7 0 1 0 13 5 2 54 4 0 79
AOI8 0 0 0 6 36 2 6 155 15 220
AOI9 0 0 2 0 3 19 0 15 83 122
Total 82 166 76 186 348 157 79 222 122 1438

Table A9. The (unnormalized) transition matrices (9× 9) of painting b3.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 38 14 4 8 1 1 0 0 0 66
AOI2 11 51 18 2 5 4 0 0 0 91
AOI3 6 16 45 0 2 11 0 0 0 80
AOI4 9 2 0 51 24 0 6 0 0 92
AOI5 1 3 1 22 212 30 0 23 3 295
AOI6 0 3 12 0 28 121 1 9 7 181
AOI7 0 0 0 7 0 0 32 14 3 56
AOI8 0 0 0 3 22 3 14 70 15 127
AOI9 0 1 0 0 1 10 3 12 27 54
Total 65 90 80 93 295 180 56 128 55 1042

Table A10. The (unnormalized) transition matrices (9× 9) of painting b4.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 81 0 14 4 0 23 0 0 0 122
AOI2 1 32 6 3 0 0 0 14 3 59
AOI3 7 9 53 32 0 2 1 1 1 106
AOI4 4 7 28 179 15 17 8 17 7 282
AOI5 0 1 0 21 84 3 27 5 7 148
AOI6 23 0 2 13 2 140 21 0 0 201
AOI7 2 0 0 5 32 17 84 1 1 142
AOI8 2 9 0 22 6 0 2 99 14 154
AOI9 0 1 1 2 9 0 0 17 32 62
Total 120 59 104 281 148 202 143 154 65 1276

Table A11. The (unnormalized) transition matrices (9× 9) of painting b5.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 113 24 3 20 3 1 3 0 0 167
AOI2 27 87 21 6 13 4 1 0 0 159
AOI3 3 22 149 0 2 16 0 0 1 193
AOI4 17 3 1 71 27 2 18 0 0 139
AOI5 6 20 4 16 99 16 2 17 4 184
AOI6 0 3 13 1 17 92 0 4 14 144
AOI7 0 0 0 21 7 0 87 15 0 130
AOI8 1 0 1 5 14 3 19 105 18 166
AOI9 0 1 0 0 2 9 1 24 114 151
Total 167 160 192 140 184 143 131 165 151 1433
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Table A12. The (unnormalized) transition matrices (9× 9) of painting b6.

a1 AOI1 AOI2 AOI3 AOI4 AOI5 AOI6 AOI7 AOI8 AOI9 Total

AOI1 62 5 15 2 12 2 0 0 1 99
AOI2 4 78 17 0 3 2 0 9 0 113
AOI3 13 15 105 2 4 14 0 2 1 156
AOI4 4 1 2 75 15 1 20 3 1 122
AOI5 8 0 5 21 103 15 1 2 1 156
AOI6 4 1 9 5 15 132 12 22 3 203
AOI7 0 1 0 12 2 15 67 5 23 125
AOI8 0 9 0 3 2 17 7 86 18 142
AOI9 0 1 3 3 0 4 18 15 74 118
Total 95 111 156 123 156 202 125 144 122 1234
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